Efficient image representation for object recognition via pivots selection
Patch-level features are essential for achieving good performance in computer vision tasks. Besides wellknown pre-defined patch-level descriptors such as scaleinvariant feature transform (SIFT) and histogram of oriented gradient (HOG), the kernel descriptor (KD) method [1] offers a new way to “grow-...
Gespeichert in:
Veröffentlicht in: | Frontiers of Computer Science 2015-06, Vol.9 (3), p.383-391 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Patch-level features are essential for achieving good performance in computer vision tasks. Besides wellknown pre-defined patch-level descriptors such as scaleinvariant feature transform (SIFT) and histogram of oriented gradient (HOG), the kernel descriptor (KD) method [1] offers a new way to “grow-up” features from a match-kernel defined over image patch pairs using kernel principal component analysis (KPCA) and yields impressive results.
In this paper, we present efficient kernel descriptor (EKD) and efficient hierarchical kernel descriptor (EHKD), which are built upon incomplete Cholesky decomposition. EKD automatically selects a small number of pivot features for generating patch-level features to achieve better computational efficiency. EHKD recursively applies EKD to form image-level features layer-by-layer. Perhaps due to parsimony, we find surprisingly that the EKD and EHKD approaches achieved competitive results on several public datasets compared with other state-of-the-art methods, at an improved efficiency over KD. |
---|---|
ISSN: | 2095-2228 2095-2236 |
DOI: | 10.1007/s11704-015-4182-7 |