Efficient image representation for object recognition via pivots selection

Patch-level features are essential for achieving good performance in computer vision tasks. Besides wellknown pre-defined patch-level descriptors such as scaleinvariant feature transform (SIFT) and histogram of oriented gradient (HOG), the kernel descriptor (KD) method [1] offers a new way to “grow-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of Computer Science 2015-06, Vol.9 (3), p.383-391
Hauptverfasser: XIE, Bojun, LIU, Yi, ZHANG, Hui, YU, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Patch-level features are essential for achieving good performance in computer vision tasks. Besides wellknown pre-defined patch-level descriptors such as scaleinvariant feature transform (SIFT) and histogram of oriented gradient (HOG), the kernel descriptor (KD) method [1] offers a new way to “grow-up” features from a match-kernel defined over image patch pairs using kernel principal component analysis (KPCA) and yields impressive results. In this paper, we present efficient kernel descriptor (EKD) and efficient hierarchical kernel descriptor (EHKD), which are built upon incomplete Cholesky decomposition. EKD automatically selects a small number of pivot features for generating patch-level features to achieve better computational efficiency. EHKD recursively applies EKD to form image-level features layer-by-layer. Perhaps due to parsimony, we find surprisingly that the EKD and EHKD approaches achieved competitive results on several public datasets compared with other state-of-the-art methods, at an improved efficiency over KD.
ISSN:2095-2228
2095-2236
DOI:10.1007/s11704-015-4182-7