A balanced decomposition approach to real-time visualization of large vector maps in CyberGIS

With the dramatic development of spatial data in- frastructure, CyberGIS has become significant for geospatial data sharing. Due to the large number of concurrent users and large volume of vector data, CyberGIS faces a great chal- lenge in how to improve performance. The real-time visual- ization of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of Computer Science 2015-06, Vol.9 (3), p.442-455
Hauptverfasser: GUO, Mingqiang, HUANG, Ying, XIE, Zhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the dramatic development of spatial data in- frastructure, CyberGIS has become significant for geospatial data sharing. Due to the large number of concurrent users and large volume of vector data, CyberGIS faces a great chal- lenge in how to improve performance. The real-time visual- ization of vector maps is the most common function in Cyber- GIS applications, and it is time-consuming especially when the data volume becomes large. So, how to improve the effi- ciency of visualization of large vector maps is still a signif- icant research direction for GIScience scientists. In this re- search, we review the existing three optimization strategies, and determine that the third category strategy (i.e., parallel optimization) is appropriate for the real-time visualization of large vector maps. One of the key issues of parallel optimiza- tion is how to decompose the real-time visualization tasks into balanced sub tasks while taking into consideration the spatial heterogeneous characteristics. We put forward some rules that the decomposition should conform to, and design a real-time visualization framework for large vector maps. We focus on a balanced decomposition approach that can assure efficiency and effectiveness. Considering the spatial hetero- geneous characteristic of vector data, we use a "horizontal grid, vertical multistage" approach to construct a spatial point distribution information grid. The load balancer analyzes the spatial characteristics of the map requests and decomposes the real-time viewshed into multiple balanced sub viewsheds.Then, all the sub viewsheds are distributed to multiple server nodes to be executed in parallel, so as to improve the real- time visualization efficiency of large vector maps. A group of experiments have been conducted by us. The analysis results demonstrate that the approach proposed in this research has the ability of balanced decomposition, and it is efficient and effective for all geometry types of vector data.
ISSN:2095-2228
2095-2236
DOI:10.1007/s11704-014-3498-7