Long-term Visual Tracking: Review and Experimental Comparison

As a fundamental task in computer vision, visual object tracking has received much attention in recent years. Most studies focus on short-term visual tracking which addresses shorter videos and always-visible targets. However, long-term visual tracking is much closer to practical applications with m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of automation and computing 2022-12, Vol.19 (6), p.512-530
Hauptverfasser: Liu, Chang, Chen, Xiao-Fan, Bo, Chun-Juan, Wang, Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As a fundamental task in computer vision, visual object tracking has received much attention in recent years. Most studies focus on short-term visual tracking which addresses shorter videos and always-visible targets. However, long-term visual tracking is much closer to practical applications with more complicated challenges. There exists a longer duration such as minute-level or even hour-level in the long-term tracking task, and the task also needs to handle more frequent target disappearance and reappearance. In this paper, we provide a thorough review of long-term tracking, summarizing long-term tracking algorithms from two perspectives: framework architectures and utilization of intermediate tracking results. Then we provide a detailed description of existing benchmarks and corresponding evaluation protocols. Furthermore, we conduct extensive experiments and analyse the performance of trackers on six benchmarks: VOTLT2018, VOTLT2019 (2020/2021), OxUvA, LaSOT, TLP and the long-term subset of VTUAV-V. Finally, we discuss the future prospects from multiple perspectives, including algorithm design and benchmark construction. To our knowledge, this is the first comprehensive survey for long-term visual object tracking. The relevant content is available at https://github.com/wangdong-dut/Long-term-Visual-Tracking .
ISSN:2731-538X
1476-8186
2153-182X
2731-5398
1751-8520
2153-1838
DOI:10.1007/s11633-022-1344-1