Rolling Shutter Camera: Modeling, Optimization and Learning

Most modern consumer-grade cameras are often equipped with a rolling shutter mechanism, which is becoming increasingly important in computer vision, robotics and autonomous driving applications. However, its temporal-dynamic imaging nature leads to the rolling shutter effect that manifests as geomet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of automation and computing 2023-12, Vol.20 (6), p.783-798
Hauptverfasser: Fan, Bin, Dai, Yuchao, He, Mingyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Most modern consumer-grade cameras are often equipped with a rolling shutter mechanism, which is becoming increasingly important in computer vision, robotics and autonomous driving applications. However, its temporal-dynamic imaging nature leads to the rolling shutter effect that manifests as geometric distortion. Over the years, researchers have made significant progress in developing tractable rolling shutter models, optimization methods, and learning approaches, aiming to remove geometry distortion and improve visual quality. In this survey, we review the recent advances in rolling shutter cameras from two aspects of motion modeling and deep learning. To the best of our knowledge, this is the first comprehensive survey of rolling shutter cameras. In the part of rolling shutter motion modeling and optimization, the principles of various rolling shutter motion models are elaborated and their typical applications are summarized. Then, the applications of deep learning in rolling shutter based image processing are presented. Finally, we conclude this survey with discussions on future research directions.
ISSN:2731-538X
1476-8186
2153-182X
2731-5398
1751-8520
2153-1838
DOI:10.1007/s11633-022-1399-z