Efficient finite impulse response filters in massively-parallel recursive systems
This paper presents strategies to massively parallelize complete recursive systems. Each algorithm handles systems with feedforward and feedback coefficients allowing to compute high-complexity filtering operators. The final algorithm is linear in time and memory, exposes a high number of parallel t...
Gespeichert in:
Veröffentlicht in: | Journal of real-time image processing 2016-10, Vol.12 (3), p.603-611 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents strategies to massively parallelize complete recursive systems. Each algorithm handles systems with feedforward and feedback coefficients allowing to compute high-complexity filtering operators. The final algorithm is linear in time and memory, exposes a high number of parallel tasks, and it is implemented on graphics processing units, i.e. GPUs. The key to the final algorithm is the derivation of closed-form formulas to combine both non-recursive and recursive linear filters, based on an efficient state-of-the-art block-based strategy. Applications to early vision are considered in this work, hence the GPU implementation runs on images computing an approximation of the Gaussian filter and its first and second derivatives. Finally, comparison results are given showing that this work outperforms prior state-of-the-art algorithms, enabling it to achieve real-time image filtering on ultra-high-definition videos. |
---|---|
ISSN: | 1861-8200 1861-8219 |
DOI: | 10.1007/s11554-015-0510-x |