Fast electrostatic halftoning
Electrostatic halftoning is a high-quality method for stippling, dithering, and sampling, but it suffers from a high runtime. This made the technique difficult to use for most real-world applications. A recently proposed minimisation scheme based on the non-equispaced fast Fourier transform (NFFT) l...
Gespeichert in:
Veröffentlicht in: | Journal of real-time image processing 2014-06, Vol.9 (2), p.379-392 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electrostatic halftoning is a high-quality method for stippling, dithering, and sampling, but it suffers from a high runtime. This made the technique difficult to use for most real-world applications. A recently proposed minimisation scheme based on the
non-equispaced fast Fourier transform
(NFFT) lowers the complexity in the particle number
M
from
to
However, the NFFT is hard to parallelise, and the runtime on modern CPUs lies still in the orders of an hour for about 50,000 particles, to a day for 1 million particles. Our contributions to remedy this problem are threefold: we design the first GPU-based NFFT algorithm without special structural assumptions on the positions of nodes, we introduce a novel nearest-neighbour identification scheme for continuous point distributions, and we optimise the whole algorithm for
n
-body problems such as electrostatic halftoning. For 1 million particles, this new algorithm runs 50 times faster than the most efficient technique on the CPU, and even yields a speedup of 7,000 over the original algorithm. |
---|---|
ISSN: | 1861-8200 1861-8219 |
DOI: | 10.1007/s11554-011-0236-3 |