Correlation analysis on GPU systems using NVIDIA’s CUDA

Functional magnetic resonance imaging allows non-invasive measurements of brain dynamics and has already been used for neurofeedback experiments, which relies on real time data processing. The limited computational resources that are typically available for this have hindered the use of connectivity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of real-time image processing 2011-12, Vol.6 (4), p.275-280
Hauptverfasser: Gembris, Daniel, Neeb, Markus, Gipp, Markus, Kugel, Andreas, Männer, Reinhard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Functional magnetic resonance imaging allows non-invasive measurements of brain dynamics and has already been used for neurofeedback experiments, which relies on real time data processing. The limited computational resources that are typically available for this have hindered the use of connectivity analysis in this context. A basic, but already computationally demanding analysis method of neural connectivity is correlation analysis that computes all pairwise correlations coefficients between the measured time series. The parallel nature of the problem predestines it for an implementation on massive parallel architectures as realized by GPUs and FPGAs. We show what performance benefits can be achieved when compared with current desktop CPUs. The use of correlation analysis is not limited to brain research, but is also relevant in other fields of image processing, e.g. for the analysis of video streams.
ISSN:1861-8200
1861-8219
DOI:10.1007/s11554-010-0162-9