Quantification of wing and body kinematics in connection to torque generation during damselfly yaw turn

This study provides accurate measurements of the wing and body kinematics of three different species of damselflies in free yaw turn fights. The yaw turn is characterized by a short acceleration phase which is immediately followed by an elongated deceleration phase. Most of the heading change takes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Physics, mechanics & astronomy mechanics & astronomy, 2017-01, Vol.60 (1), p.32-41, Article 014711
Hauptverfasser: Zeyghami, Samane, Bode-Oke, Ayodeji T., Dong, HaiBo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study provides accurate measurements of the wing and body kinematics of three different species of damselflies in free yaw turn fights. The yaw turn is characterized by a short acceleration phase which is immediately followed by an elongated deceleration phase. Most of the heading change takes place during the latter stage of the flight. Our observations showed that yaw turns are executed via drastic rather than subtle changes in the kinematics of all four wings. The motion of the inner and outer wings were found to be strongly linked through their orientation as well as their velocities with the inner wings moving faster than the outer wings. By controlling the pitch angle and wing velocity, a damselfly adjusts the angle of attack. The wing angle of attack exerted the strongest influence on the yaw torque, followed by the flapping and deviation velocities of the wings. Moreover, no evidence of active generation of counter torque was found in the flight data implying that deceleration and stopping of the maneuver is dominated by passive damping. The systematic analysis carried out on the free flight data advances our understanding of the mechanisms by which these insects achieve their observed maneuverability. In addition, the inspiration drawn from this study can be employed in the design of low frequency flapping wing micro air vehicles (MAV's).
ISSN:1674-7348
1869-1927
DOI:10.1007/s11433-016-0302-5