Fast System Level Synthesis: Robust Model Predictive Control using Riccati Recursions
System level synthesis enables improved robust MPC formulations by allowing for joint optimization of the nominal trajectory and controller. This paper introduces a tailored algorithm for solving the corresponding disturbance feedback optimization problem for linear time-varying systems. The propose...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-09 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | System level synthesis enables improved robust MPC formulations by allowing for joint optimization of the nominal trajectory and controller. This paper introduces a tailored algorithm for solving the corresponding disturbance feedback optimization problem for linear time-varying systems. The proposed algorithm iterates between optimizing the controller and the nominal trajectory while converging q-linearly to an optimal solution. We show that the controller optimization can be solved through Riccati recursions leading to a horizon-length, state, and input scalability of \(\mathcal{O}(N^2 ( n_x^3 +n_u^3))\) for each iterate. On a numerical example, the proposed algorithm exhibits computational speedups by a factor of up to \(10^3\) compared to general-purpose commercial solvers. |
---|---|
ISSN: | 2331-8422 |