Fast System Level Synthesis: Robust Model Predictive Control using Riccati Recursions

System level synthesis enables improved robust MPC formulations by allowing for joint optimization of the nominal trajectory and controller. This paper introduces a tailored algorithm for solving the corresponding disturbance feedback optimization problem for linear time-varying systems. The propose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-09
Hauptverfasser: Leeman, Antoine P, Köhler, Johannes, Messerer, Florian, Lahr, Amon, Diehl, Moritz, Zeilinger, Melanie N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:System level synthesis enables improved robust MPC formulations by allowing for joint optimization of the nominal trajectory and controller. This paper introduces a tailored algorithm for solving the corresponding disturbance feedback optimization problem for linear time-varying systems. The proposed algorithm iterates between optimizing the controller and the nominal trajectory while converging q-linearly to an optimal solution. We show that the controller optimization can be solved through Riccati recursions leading to a horizon-length, state, and input scalability of \(\mathcal{O}(N^2 ( n_x^3 +n_u^3))\) for each iterate. On a numerical example, the proposed algorithm exhibits computational speedups by a factor of up to \(10^3\) compared to general-purpose commercial solvers.
ISSN:2331-8422