A Hitchhiker’s Guide to Automatic Differentiation

This article provides an overview of some of the mathematical principles of Automatic Differentiation (AD). In particular, we summarise different descriptions of the Forward Mode of AD, like the matrix-vector product based approach, the idea of lifting functions to the algebra of dual numbers, the m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical algorithms 2016-07, Vol.72 (3), p.775-811
1. Verfasser: Hoffmann, Philipp H. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 811
container_issue 3
container_start_page 775
container_title Numerical algorithms
container_volume 72
creator Hoffmann, Philipp H. W.
description This article provides an overview of some of the mathematical principles of Automatic Differentiation (AD). In particular, we summarise different descriptions of the Forward Mode of AD, like the matrix-vector product based approach, the idea of lifting functions to the algebra of dual numbers, the method of Taylor series expansion on dual numbers and the application of the push-forward operator, and explain why they all reduce to the same actual chain of computations.We further give a short mathematical description of some methods of higher-order Forward AD and, at the end of this paper, briefly describe the Reverse Mode of Automatic Differentiation.
doi_str_mv 10.1007/s11075-015-0067-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918650905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918650905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-78f81ee40d759d6c3e7d1f6b9e709b665f28952441ca5b0c9fa8df2e013e60653</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKsP4G3Bc3Qm2ySbY6naCgUveg7bbGJT7W5Nsgdvvoav55OYZQVPHoaZgf-bgY-QS4RrBJA3EREkp4C5QEgqjsgEuWRUMcGP8wwoKZaqOiVnMe4AMsXkhJTzYuWT2W79qw3fn1-xWPa-sUXqinmfun2dvCluvXM22Db5vHbtOTlx9Vu0F799Sp7v754WK7p-XD4s5mtqShSJyspVaO0MGslVI0xpZYNObJSVoDZCcMcqxdlshqbmGzDK1VXjmAUsrQDByym5Gu8eQvfe25j0rutDm19qprASHBQMKRxTJnQxBuv0Ifh9HT40gh7c6NGNzm704EaLzLCRiTnbvtjwd_l_6AfTw2X3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918650905</pqid></control><display><type>article</type><title>A Hitchhiker’s Guide to Automatic Differentiation</title><source>Springer Nature - Complete Springer Journals</source><creator>Hoffmann, Philipp H. W.</creator><creatorcontrib>Hoffmann, Philipp H. W.</creatorcontrib><description>This article provides an overview of some of the mathematical principles of Automatic Differentiation (AD). In particular, we summarise different descriptions of the Forward Mode of AD, like the matrix-vector product based approach, the idea of lifting functions to the algebra of dual numbers, the method of Taylor series expansion on dual numbers and the application of the push-forward operator, and explain why they all reduce to the same actual chain of computations.We further give a short mathematical description of some methods of higher-order Forward AD and, at the end of this paper, briefly describe the Reverse Mode of Automatic Differentiation.</description><identifier>ISSN: 1017-1398</identifier><identifier>EISSN: 1572-9265</identifier><identifier>DOI: 10.1007/s11075-015-0067-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Algorithms ; Computer Science ; Differentiation ; Mathematical analysis ; Matrix algebra ; Numeric Computing ; Numerical Analysis ; Operators (mathematics) ; Original Paper ; Series expansion ; Taylor series ; Theory of Computation</subject><ispartof>Numerical algorithms, 2016-07, Vol.72 (3), p.775-811</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>Springer Science+Business Media New York 2015.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-78f81ee40d759d6c3e7d1f6b9e709b665f28952441ca5b0c9fa8df2e013e60653</citedby><cites>FETCH-LOGICAL-c316t-78f81ee40d759d6c3e7d1f6b9e709b665f28952441ca5b0c9fa8df2e013e60653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11075-015-0067-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11075-015-0067-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Hoffmann, Philipp H. W.</creatorcontrib><title>A Hitchhiker’s Guide to Automatic Differentiation</title><title>Numerical algorithms</title><addtitle>Numer Algor</addtitle><description>This article provides an overview of some of the mathematical principles of Automatic Differentiation (AD). In particular, we summarise different descriptions of the Forward Mode of AD, like the matrix-vector product based approach, the idea of lifting functions to the algebra of dual numbers, the method of Taylor series expansion on dual numbers and the application of the push-forward operator, and explain why they all reduce to the same actual chain of computations.We further give a short mathematical description of some methods of higher-order Forward AD and, at the end of this paper, briefly describe the Reverse Mode of Automatic Differentiation.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Computer Science</subject><subject>Differentiation</subject><subject>Mathematical analysis</subject><subject>Matrix algebra</subject><subject>Numeric Computing</subject><subject>Numerical Analysis</subject><subject>Operators (mathematics)</subject><subject>Original Paper</subject><subject>Series expansion</subject><subject>Taylor series</subject><subject>Theory of Computation</subject><issn>1017-1398</issn><issn>1572-9265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMFKAzEQhoMoWKsP4G3Bc3Qm2ySbY6naCgUveg7bbGJT7W5Nsgdvvoav55OYZQVPHoaZgf-bgY-QS4RrBJA3EREkp4C5QEgqjsgEuWRUMcGP8wwoKZaqOiVnMe4AMsXkhJTzYuWT2W79qw3fn1-xWPa-sUXqinmfun2dvCluvXM22Db5vHbtOTlx9Vu0F799Sp7v754WK7p-XD4s5mtqShSJyspVaO0MGslVI0xpZYNObJSVoDZCcMcqxdlshqbmGzDK1VXjmAUsrQDByym5Gu8eQvfe25j0rutDm19qprASHBQMKRxTJnQxBuv0Ifh9HT40gh7c6NGNzm704EaLzLCRiTnbvtjwd_l_6AfTw2X3</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Hoffmann, Philipp H. W.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20160701</creationdate><title>A Hitchhiker’s Guide to Automatic Differentiation</title><author>Hoffmann, Philipp H. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-78f81ee40d759d6c3e7d1f6b9e709b665f28952441ca5b0c9fa8df2e013e60653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Computer Science</topic><topic>Differentiation</topic><topic>Mathematical analysis</topic><topic>Matrix algebra</topic><topic>Numeric Computing</topic><topic>Numerical Analysis</topic><topic>Operators (mathematics)</topic><topic>Original Paper</topic><topic>Series expansion</topic><topic>Taylor series</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoffmann, Philipp H. W.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Numerical algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoffmann, Philipp H. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hitchhiker’s Guide to Automatic Differentiation</atitle><jtitle>Numerical algorithms</jtitle><stitle>Numer Algor</stitle><date>2016-07-01</date><risdate>2016</risdate><volume>72</volume><issue>3</issue><spage>775</spage><epage>811</epage><pages>775-811</pages><issn>1017-1398</issn><eissn>1572-9265</eissn><abstract>This article provides an overview of some of the mathematical principles of Automatic Differentiation (AD). In particular, we summarise different descriptions of the Forward Mode of AD, like the matrix-vector product based approach, the idea of lifting functions to the algebra of dual numbers, the method of Taylor series expansion on dual numbers and the application of the push-forward operator, and explain why they all reduce to the same actual chain of computations.We further give a short mathematical description of some methods of higher-order Forward AD and, at the end of this paper, briefly describe the Reverse Mode of Automatic Differentiation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11075-015-0067-6</doi><tpages>37</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1017-1398
ispartof Numerical algorithms, 2016-07, Vol.72 (3), p.775-811
issn 1017-1398
1572-9265
language eng
recordid cdi_proquest_journals_2918650905
source Springer Nature - Complete Springer Journals
subjects Algebra
Algorithms
Computer Science
Differentiation
Mathematical analysis
Matrix algebra
Numeric Computing
Numerical Analysis
Operators (mathematics)
Original Paper
Series expansion
Taylor series
Theory of Computation
title A Hitchhiker’s Guide to Automatic Differentiation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A09%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hitchhiker%E2%80%99s%20Guide%20to%20Automatic%20Differentiation&rft.jtitle=Numerical%20algorithms&rft.au=Hoffmann,%20Philipp%20H.%20W.&rft.date=2016-07-01&rft.volume=72&rft.issue=3&rft.spage=775&rft.epage=811&rft.pages=775-811&rft.issn=1017-1398&rft.eissn=1572-9265&rft_id=info:doi/10.1007/s11075-015-0067-6&rft_dat=%3Cproquest_cross%3E2918650905%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918650905&rft_id=info:pmid/&rfr_iscdi=true