A Hitchhiker’s Guide to Automatic Differentiation
This article provides an overview of some of the mathematical principles of Automatic Differentiation (AD). In particular, we summarise different descriptions of the Forward Mode of AD, like the matrix-vector product based approach, the idea of lifting functions to the algebra of dual numbers, the m...
Gespeichert in:
Veröffentlicht in: | Numerical algorithms 2016-07, Vol.72 (3), p.775-811 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 811 |
---|---|
container_issue | 3 |
container_start_page | 775 |
container_title | Numerical algorithms |
container_volume | 72 |
creator | Hoffmann, Philipp H. W. |
description | This article provides an overview of some of the mathematical principles of Automatic Differentiation (AD). In particular, we summarise different descriptions of the Forward Mode of AD, like the matrix-vector product based approach, the idea of lifting functions to the algebra of dual numbers, the method of Taylor series expansion on dual numbers and the application of the push-forward operator, and explain why they all reduce to the same actual chain of computations.We further give a short mathematical description of some methods of higher-order Forward AD and, at the end of this paper, briefly describe the Reverse Mode of Automatic Differentiation. |
doi_str_mv | 10.1007/s11075-015-0067-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918650905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918650905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-78f81ee40d759d6c3e7d1f6b9e709b665f28952441ca5b0c9fa8df2e013e60653</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKsP4G3Bc3Qm2ySbY6naCgUveg7bbGJT7W5Nsgdvvoav55OYZQVPHoaZgf-bgY-QS4RrBJA3EREkp4C5QEgqjsgEuWRUMcGP8wwoKZaqOiVnMe4AMsXkhJTzYuWT2W79qw3fn1-xWPa-sUXqinmfun2dvCluvXM22Db5vHbtOTlx9Vu0F799Sp7v754WK7p-XD4s5mtqShSJyspVaO0MGslVI0xpZYNObJSVoDZCcMcqxdlshqbmGzDK1VXjmAUsrQDByym5Gu8eQvfe25j0rutDm19qprASHBQMKRxTJnQxBuv0Ifh9HT40gh7c6NGNzm704EaLzLCRiTnbvtjwd_l_6AfTw2X3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918650905</pqid></control><display><type>article</type><title>A Hitchhiker’s Guide to Automatic Differentiation</title><source>Springer Nature - Complete Springer Journals</source><creator>Hoffmann, Philipp H. W.</creator><creatorcontrib>Hoffmann, Philipp H. W.</creatorcontrib><description>This article provides an overview of some of the mathematical principles of Automatic Differentiation (AD). In particular, we summarise different descriptions of the Forward Mode of AD, like the matrix-vector product based approach, the idea of lifting functions to the algebra of dual numbers, the method of Taylor series expansion on dual numbers and the application of the push-forward operator, and explain why they all reduce to the same actual chain of computations.We further give a short mathematical description of some methods of higher-order Forward AD and, at the end of this paper, briefly describe the Reverse Mode of Automatic Differentiation.</description><identifier>ISSN: 1017-1398</identifier><identifier>EISSN: 1572-9265</identifier><identifier>DOI: 10.1007/s11075-015-0067-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Algorithms ; Computer Science ; Differentiation ; Mathematical analysis ; Matrix algebra ; Numeric Computing ; Numerical Analysis ; Operators (mathematics) ; Original Paper ; Series expansion ; Taylor series ; Theory of Computation</subject><ispartof>Numerical algorithms, 2016-07, Vol.72 (3), p.775-811</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>Springer Science+Business Media New York 2015.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-78f81ee40d759d6c3e7d1f6b9e709b665f28952441ca5b0c9fa8df2e013e60653</citedby><cites>FETCH-LOGICAL-c316t-78f81ee40d759d6c3e7d1f6b9e709b665f28952441ca5b0c9fa8df2e013e60653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11075-015-0067-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11075-015-0067-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Hoffmann, Philipp H. W.</creatorcontrib><title>A Hitchhiker’s Guide to Automatic Differentiation</title><title>Numerical algorithms</title><addtitle>Numer Algor</addtitle><description>This article provides an overview of some of the mathematical principles of Automatic Differentiation (AD). In particular, we summarise different descriptions of the Forward Mode of AD, like the matrix-vector product based approach, the idea of lifting functions to the algebra of dual numbers, the method of Taylor series expansion on dual numbers and the application of the push-forward operator, and explain why they all reduce to the same actual chain of computations.We further give a short mathematical description of some methods of higher-order Forward AD and, at the end of this paper, briefly describe the Reverse Mode of Automatic Differentiation.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Computer Science</subject><subject>Differentiation</subject><subject>Mathematical analysis</subject><subject>Matrix algebra</subject><subject>Numeric Computing</subject><subject>Numerical Analysis</subject><subject>Operators (mathematics)</subject><subject>Original Paper</subject><subject>Series expansion</subject><subject>Taylor series</subject><subject>Theory of Computation</subject><issn>1017-1398</issn><issn>1572-9265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMFKAzEQhoMoWKsP4G3Bc3Qm2ySbY6naCgUveg7bbGJT7W5Nsgdvvoav55OYZQVPHoaZgf-bgY-QS4RrBJA3EREkp4C5QEgqjsgEuWRUMcGP8wwoKZaqOiVnMe4AMsXkhJTzYuWT2W79qw3fn1-xWPa-sUXqinmfun2dvCluvXM22Db5vHbtOTlx9Vu0F799Sp7v754WK7p-XD4s5mtqShSJyspVaO0MGslVI0xpZYNObJSVoDZCcMcqxdlshqbmGzDK1VXjmAUsrQDByym5Gu8eQvfe25j0rutDm19qprASHBQMKRxTJnQxBuv0Ifh9HT40gh7c6NGNzm704EaLzLCRiTnbvtjwd_l_6AfTw2X3</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Hoffmann, Philipp H. W.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20160701</creationdate><title>A Hitchhiker’s Guide to Automatic Differentiation</title><author>Hoffmann, Philipp H. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-78f81ee40d759d6c3e7d1f6b9e709b665f28952441ca5b0c9fa8df2e013e60653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Computer Science</topic><topic>Differentiation</topic><topic>Mathematical analysis</topic><topic>Matrix algebra</topic><topic>Numeric Computing</topic><topic>Numerical Analysis</topic><topic>Operators (mathematics)</topic><topic>Original Paper</topic><topic>Series expansion</topic><topic>Taylor series</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoffmann, Philipp H. W.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Numerical algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoffmann, Philipp H. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hitchhiker’s Guide to Automatic Differentiation</atitle><jtitle>Numerical algorithms</jtitle><stitle>Numer Algor</stitle><date>2016-07-01</date><risdate>2016</risdate><volume>72</volume><issue>3</issue><spage>775</spage><epage>811</epage><pages>775-811</pages><issn>1017-1398</issn><eissn>1572-9265</eissn><abstract>This article provides an overview of some of the mathematical principles of Automatic Differentiation (AD). In particular, we summarise different descriptions of the Forward Mode of AD, like the matrix-vector product based approach, the idea of lifting functions to the algebra of dual numbers, the method of Taylor series expansion on dual numbers and the application of the push-forward operator, and explain why they all reduce to the same actual chain of computations.We further give a short mathematical description of some methods of higher-order Forward AD and, at the end of this paper, briefly describe the Reverse Mode of Automatic Differentiation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11075-015-0067-6</doi><tpages>37</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1017-1398 |
ispartof | Numerical algorithms, 2016-07, Vol.72 (3), p.775-811 |
issn | 1017-1398 1572-9265 |
language | eng |
recordid | cdi_proquest_journals_2918650905 |
source | Springer Nature - Complete Springer Journals |
subjects | Algebra Algorithms Computer Science Differentiation Mathematical analysis Matrix algebra Numeric Computing Numerical Analysis Operators (mathematics) Original Paper Series expansion Taylor series Theory of Computation |
title | A Hitchhiker’s Guide to Automatic Differentiation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A09%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hitchhiker%E2%80%99s%20Guide%20to%20Automatic%20Differentiation&rft.jtitle=Numerical%20algorithms&rft.au=Hoffmann,%20Philipp%20H.%20W.&rft.date=2016-07-01&rft.volume=72&rft.issue=3&rft.spage=775&rft.epage=811&rft.pages=775-811&rft.issn=1017-1398&rft.eissn=1572-9265&rft_id=info:doi/10.1007/s11075-015-0067-6&rft_dat=%3Cproquest_cross%3E2918650905%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918650905&rft_id=info:pmid/&rfr_iscdi=true |