A Hitchhiker’s Guide to Automatic Differentiation

This article provides an overview of some of the mathematical principles of Automatic Differentiation (AD). In particular, we summarise different descriptions of the Forward Mode of AD, like the matrix-vector product based approach, the idea of lifting functions to the algebra of dual numbers, the m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical algorithms 2016-07, Vol.72 (3), p.775-811
1. Verfasser: Hoffmann, Philipp H. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article provides an overview of some of the mathematical principles of Automatic Differentiation (AD). In particular, we summarise different descriptions of the Forward Mode of AD, like the matrix-vector product based approach, the idea of lifting functions to the algebra of dual numbers, the method of Taylor series expansion on dual numbers and the application of the push-forward operator, and explain why they all reduce to the same actual chain of computations.We further give a short mathematical description of some methods of higher-order Forward AD and, at the end of this paper, briefly describe the Reverse Mode of Automatic Differentiation.
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-015-0067-6