A family of systems including the Herschel-Bulkley fluid equations

We analyze the Navier-Stokes equations for incompressible fluids with the {\lq\lq}viscous stress tensor{\rq\rq} \(\mathbb{S}\) in a family which includes the Bingham model for viscoplastic fluids (more generally, the Herschel-Bulkley model). \(\mathbb{S}\) is the subgradient of a convex potential \(...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-01
Hauptverfasser: Chemetov, Nikolai V, Santos, Marcelo M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We analyze the Navier-Stokes equations for incompressible fluids with the {\lq\lq}viscous stress tensor{\rq\rq} \(\mathbb{S}\) in a family which includes the Bingham model for viscoplastic fluids (more generally, the Herschel-Bulkley model). \(\mathbb{S}\) is the subgradient of a convex potential \(V=V(x,t,X)\), allowing that \(V\) can depend on the space-time variables \((x,t)\). The potential has its one-sided directional derivatives \(V'(X,X)\) uniformly bounded from below and above by a \(p\)-power function of the matrices \(X\). For \(p\geqslant 2.2\) we solve an initial boundary value problem for those fluid systems, in a bounded region in \(\mathbb{R}^3\). We take a nonlinear boundary condition, which encompasses the Navier friction/slip boundary condition.
ISSN:2331-8422