Photoelectrocatalytic oxidation of GMP on an ITO electrode modified with clay/[Ru(phen)2(dC18bpy)]2+ hybrid film

An indium tin oxide (ITO) electrode modified with monolayer clay/[Ru(phen)2(dC18bpy)]2+ (phen= 1,10-phenanthroline, dC18bpy = 4,4′-dioctadecyl-2,2′ bipyridyl) hybrid film has been fabricated by the Langmuir-Blodgett (LB) method. Atomic force microscopy revealed that the single-layered hybrid film of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Chemistry 2009-03, Vol.52 (3), p.318-324
Hauptverfasser: Chang, XueQin, Wang, Shun, Lin, DaJie, Guan, WeiPeng, Zhou, Huan, Huang, ShaoMing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An indium tin oxide (ITO) electrode modified with monolayer clay/[Ru(phen)2(dC18bpy)]2+ (phen= 1,10-phenanthroline, dC18bpy = 4,4′-dioctadecyl-2,2′ bipyridyl) hybrid film has been fabricated by the Langmuir-Blodgett (LB) method. Atomic force microscopy revealed that the single-layered hybrid film of clay/[Ru(phen)2(dC18bpy)]2+ (denoted as Clay-Ru) was closely packed at a surface pressure of 25 mN-m-1 and had a thickness of 3.4±0.5 nm. Cyclic voltammograms showed that the redox current of Ru(Ⅱ) complex decreased when incorporated into the clay film, suggesting that the clay layer acts as a barrier against electron transfer. When applied to oxidizing the mononucleotide of guanosine 5′-monophosphate (GMP), a large catalytic oxidative current was achieved on the Clay-Ru(Ⅱ) modified ITO electrode at the external potential above 900 mV (vs. Ag|AgCl|KCl ) and, more significantly, this response was further enhanced by light irradiation (λ>360 nm), in which the photocurrent is increased about 11 times in comparison with that of a bare ITO. Mechanism of the photoelectrocatalytic effect was proposed in terms of the reduction of the photoelectrochemically generated Ru(Ⅲ) complex in the Clay-Ru film by GMP.
ISSN:1674-7291
1006-9291
1869-1870
1862-2771
DOI:10.1007/s11426-009-0052-9