Alkali metal salts doped pluronic block polymers as electron injection/transport layers for high performance polymer light-emitting diodes

A series of alkali metal salts doped pluronic block copolymer F127 were used as electron injection/transport layers (ETLs) for polymer light-emitting diodes with poly[2-(4-(3′,7′-dimethyloctyloxy)-phenyl)-p-phenylenevinylene] (P-PPV) as the emission layer. It was found that the electron transport ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Chemistry 2012-05, Vol.55 (5), p.766-771
Hauptverfasser: Zhang, Kai, Liu, ShengJian, Guan, Xing, Duan, ChunHui, Zhang, Jie, Zhong, ChengMei, Wang, Lei, Huang, Fei, Cao, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A series of alkali metal salts doped pluronic block copolymer F127 were used as electron injection/transport layers (ETLs) for polymer light-emitting diodes with poly[2-(4-(3′,7′-dimethyloctyloxy)-phenyl)-p-phenylenevinylene] (P-PPV) as the emission layer. It was found that the electron transport capability of F127 can be effectively enhanced by doping with alkali metal salts. By using Li2CO3 (15%) doped F127 as ETL, the resulting device exhibited improved performance with a maximum luminous efficiency (LE) of 13.59 cd/A and a maximum brightness of 5529 cd/m2, while the device with undoped F127 as ETL only showed a maximum LE of 8.78 cd/A and a maximum brightness of 2952 cd/m2. The effects of the doping concentration, cations and anions of the alkali metal salts on the performance of the resulting devices were investigated. It was found that most of the alkali metal salt dopants can dramatically enhance the electron transport capability of F127 ETL and the performance of the resulting devices was greatly improved.
ISSN:1674-7291
1869-1870
DOI:10.1007/s11426-012-4530-0