An interior penalty approach to a large-scale discretized obstacle problem with nonlinear constraints

We propose an interior penalty method to solve a nonlinear obstacle problem arising from the discretization of an infinite-dimensional optimization problem. An interior penalty equation is proposed to approximate the mixed nonlinear complementarity problem representing the Karush-Kuhn-Tucker conditi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical algorithms 2020-10, Vol.85 (2), p.571-589
Hauptverfasser: Zhao, Jian-Xun, Wang, Song
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose an interior penalty method to solve a nonlinear obstacle problem arising from the discretization of an infinite-dimensional optimization problem. An interior penalty equation is proposed to approximate the mixed nonlinear complementarity problem representing the Karush-Kuhn-Tucker conditions of the obstacle problem. We prove that the penalty equation is uniquely solvable and present a convergence analysis for the solution of the penalty equation when the problem is strictly convex. We also propose a Newton’s algorithm for solving the penalty equation. Numerical experiments are performed to demonstrate the convergence and usefulness of the method when it is used for the two non-trivial test problems.
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-019-00827-2