Dynamic separation of Xe and Kr by metal-organic framework and covalent-organic materials: a comparison with activated charcoal
We systematically investigate dynamic separation of Xe and Kr at room temperature using four representative porous materials (Cu-BTC, ZIF-8, COP-4 and activated carbon (AC)). Results indicate that among the four materials, Cu-BTC not only shows the highest retention volume per gram (Vg=788 mL g-1, w...
Gespeichert in:
Veröffentlicht in: | Science China. Chemistry 2016-05, Vol.59 (5), p.643-650 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We systematically investigate dynamic separation of Xe and Kr at room temperature using four representative porous materials (Cu-BTC, ZIF-8, COP-4 and activated carbon (AC)). Results indicate that among the four materials, Cu-BTC not only shows the highest retention volume per gram (Vg=788 mL g-1, which is 1.8 times of activated carbon (436 mL g-1)) under flowing condition, but also can separate 350 ppm Xe from 35 ppm Kr mixture in air with a high Xe/Kr selectivity of 8.6 at room tem- perature and 200 kPa, due to its suitable pore morphology, open metal sites, small side pockets in the framework. Moreover, the Cu-BTC also performs well on individual separation of Xe, Kr, CO2 from five-component gas mixture (Xe:Kr:CO2:Ar:N2= 1:1:1:1:0.5, V/V) and has the longest retention time for Xe (20 min) in gas chromatographic separation, suggesting that it is a good candidate for potential applications as polymeric sieves. |
---|---|
ISSN: | 1674-7291 1869-1870 |
DOI: | 10.1007/s11426-016-5582-3 |