The radiation structure of PSR B2016+28 observed with FAST

With the largest dish Five-hundred-meter Aperture Spherical radio Telescope (FAST), both the mean and single pulses of PSR B2016+28, especially including the single-pulse structure, are investigated in detail in this study. The mean pulse profiles at different frequencies can be well fitted in a con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Physics, mechanics & astronomy mechanics & astronomy, 2019-05, Vol.62 (5), p.959505, Article 959505
Hauptverfasser: Lu, JiGuang, Peng, Bo, Xu, RenXin, Yu, Meng, Dai, Shi, Zhu, WeiWei, Yu, Ye-Zhao, Jiang, Peng, Yue, YouLing, Wang, Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 959505
container_title Science China. Physics, mechanics & astronomy
container_volume 62
creator Lu, JiGuang
Peng, Bo
Xu, RenXin
Yu, Meng
Dai, Shi
Zhu, WeiWei
Yu, Ye-Zhao
Jiang, Peng
Yue, YouLing
Wang, Lin
description With the largest dish Five-hundred-meter Aperture Spherical radio Telescope (FAST), both the mean and single pulses of PSR B2016+28, especially including the single-pulse structure, are investigated in detail in this study. The mean pulse profiles at different frequencies can be well fitted in a conal model, and the peak separation of intensity-dependent pulse profiles increases with intensity. The integrated pulses are obviously frequency dependent (pulse width decreases by ~20% as frequency increases from 300 to 750 MHz), but the structure of single pulses changes slightly (the corresponding correlation scale decreases by only ~1%). This disparity between mean and single pulses provides independent evidence for the existence of the RS-type vacuum inner gap, indicating a strong bond between particles on the pulsar surface. Diffused drifting sub-pulses are analyzed. The results show that the modulation period along pulse series ( P 3 ) is positively correlated to the separation between two adjacent sub-pulses ( P 2 ). This correlation may hint a rough surface on the pulsar, eventually resulting in the irregular drift of sparks. All the observational results may have significant implications in the dynamics of pulsar magnetosphere and are discussed extensively in this paper.
doi_str_mv 10.1007/s11433-019-9394-x
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2918616116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A727492580</galeid><sourcerecordid>A727492580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-a6ed47bb2d59d74cc73c41001f20d72dd646664d6c070ac25cde7f55b67c21363</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWLQP4C7gUlJzm6RxV4tVoaDYug6ZJNNOaSc1mdH69qaM4MqcRQ6H_zuXH4ArgkcEY3mbCOGMIUwUUkxxdDgBAzIWChFF5WnOheRIMj4-B8OUNjg_pjCXfADulmsPo3G1aevQwNTGzrZd9DBU8HXxBu8pJuKGjmEok4-f3sGvul3D2WSxvARnldkmP_z9L8D77GE5fULzl8fn6WSOLCuKFhnhHZdlSV2hnOTWSmZ5XptUFDtJnRNcCMGdsFhiY2lhnZdVUZRCWkqYYBfguu-7j-Gj86nVm9DFJo_UVOUziSDkqBr1qpXZel03VWijsTmc39U2NL6qc30iqeSKFmOcAdIDNoaUoq_0PtY7E781wfpoq-5t1dlWfbRVHzJDeyZlbbPy8W-V_6Efcvl3Fg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918616116</pqid></control><display><type>article</type><title>The radiation structure of PSR B2016+28 observed with FAST</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lu, JiGuang ; Peng, Bo ; Xu, RenXin ; Yu, Meng ; Dai, Shi ; Zhu, WeiWei ; Yu, Ye-Zhao ; Jiang, Peng ; Yue, YouLing ; Wang, Lin</creator><creatorcontrib>Lu, JiGuang ; Peng, Bo ; Xu, RenXin ; Yu, Meng ; Dai, Shi ; Zhu, WeiWei ; Yu, Ye-Zhao ; Jiang, Peng ; Yue, YouLing ; Wang, Lin ; FAST Collaboration</creatorcontrib><description>With the largest dish Five-hundred-meter Aperture Spherical radio Telescope (FAST), both the mean and single pulses of PSR B2016+28, especially including the single-pulse structure, are investigated in detail in this study. The mean pulse profiles at different frequencies can be well fitted in a conal model, and the peak separation of intensity-dependent pulse profiles increases with intensity. The integrated pulses are obviously frequency dependent (pulse width decreases by ~20% as frequency increases from 300 to 750 MHz), but the structure of single pulses changes slightly (the corresponding correlation scale decreases by only ~1%). This disparity between mean and single pulses provides independent evidence for the existence of the RS-type vacuum inner gap, indicating a strong bond between particles on the pulsar surface. Diffused drifting sub-pulses are analyzed. The results show that the modulation period along pulse series ( P 3 ) is positively correlated to the separation between two adjacent sub-pulses ( P 2 ). This correlation may hint a rough surface on the pulsar, eventually resulting in the irregular drift of sparks. All the observational results may have significant implications in the dynamics of pulsar magnetosphere and are discussed extensively in this paper.</description><identifier>ISSN: 1674-7348</identifier><identifier>EISSN: 1869-1927</identifier><identifier>DOI: 10.1007/s11433-019-9394-x</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Analysis ; Astronomy ; Classical and Continuum Physics ; Collaboration ; Correlation ; Geomagnetism ; Magnetosphere ; Observations and Techniques ; Physics ; Physics and Astronomy ; Pulsar magnetospheres ; Pulsars ; Pulse duration ; Radiation ; Radio telescopes ; Science ; Separation ; Telescope ; Telescopes</subject><ispartof>Science China. Physics, mechanics &amp; astronomy, 2019-05, Vol.62 (5), p.959505, Article 959505</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-a6ed47bb2d59d74cc73c41001f20d72dd646664d6c070ac25cde7f55b67c21363</citedby><cites>FETCH-LOGICAL-c355t-a6ed47bb2d59d74cc73c41001f20d72dd646664d6c070ac25cde7f55b67c21363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11433-019-9394-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11433-019-9394-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lu, JiGuang</creatorcontrib><creatorcontrib>Peng, Bo</creatorcontrib><creatorcontrib>Xu, RenXin</creatorcontrib><creatorcontrib>Yu, Meng</creatorcontrib><creatorcontrib>Dai, Shi</creatorcontrib><creatorcontrib>Zhu, WeiWei</creatorcontrib><creatorcontrib>Yu, Ye-Zhao</creatorcontrib><creatorcontrib>Jiang, Peng</creatorcontrib><creatorcontrib>Yue, YouLing</creatorcontrib><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>FAST Collaboration</creatorcontrib><title>The radiation structure of PSR B2016+28 observed with FAST</title><title>Science China. Physics, mechanics &amp; astronomy</title><addtitle>Sci. China Phys. Mech. Astron</addtitle><description>With the largest dish Five-hundred-meter Aperture Spherical radio Telescope (FAST), both the mean and single pulses of PSR B2016+28, especially including the single-pulse structure, are investigated in detail in this study. The mean pulse profiles at different frequencies can be well fitted in a conal model, and the peak separation of intensity-dependent pulse profiles increases with intensity. The integrated pulses are obviously frequency dependent (pulse width decreases by ~20% as frequency increases from 300 to 750 MHz), but the structure of single pulses changes slightly (the corresponding correlation scale decreases by only ~1%). This disparity between mean and single pulses provides independent evidence for the existence of the RS-type vacuum inner gap, indicating a strong bond between particles on the pulsar surface. Diffused drifting sub-pulses are analyzed. The results show that the modulation period along pulse series ( P 3 ) is positively correlated to the separation between two adjacent sub-pulses ( P 2 ). This correlation may hint a rough surface on the pulsar, eventually resulting in the irregular drift of sparks. All the observational results may have significant implications in the dynamics of pulsar magnetosphere and are discussed extensively in this paper.</description><subject>Analysis</subject><subject>Astronomy</subject><subject>Classical and Continuum Physics</subject><subject>Collaboration</subject><subject>Correlation</subject><subject>Geomagnetism</subject><subject>Magnetosphere</subject><subject>Observations and Techniques</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Pulsar magnetospheres</subject><subject>Pulsars</subject><subject>Pulse duration</subject><subject>Radiation</subject><subject>Radio telescopes</subject><subject>Science</subject><subject>Separation</subject><subject>Telescope</subject><subject>Telescopes</subject><issn>1674-7348</issn><issn>1869-1927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kMtKAzEUhoMoWLQP4C7gUlJzm6RxV4tVoaDYug6ZJNNOaSc1mdH69qaM4MqcRQ6H_zuXH4ArgkcEY3mbCOGMIUwUUkxxdDgBAzIWChFF5WnOheRIMj4-B8OUNjg_pjCXfADulmsPo3G1aevQwNTGzrZd9DBU8HXxBu8pJuKGjmEok4-f3sGvul3D2WSxvARnldkmP_z9L8D77GE5fULzl8fn6WSOLCuKFhnhHZdlSV2hnOTWSmZ5XptUFDtJnRNcCMGdsFhiY2lhnZdVUZRCWkqYYBfguu-7j-Gj86nVm9DFJo_UVOUziSDkqBr1qpXZel03VWijsTmc39U2NL6qc30iqeSKFmOcAdIDNoaUoq_0PtY7E781wfpoq-5t1dlWfbRVHzJDeyZlbbPy8W-V_6Efcvl3Fg</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Lu, JiGuang</creator><creator>Peng, Bo</creator><creator>Xu, RenXin</creator><creator>Yu, Meng</creator><creator>Dai, Shi</creator><creator>Zhu, WeiWei</creator><creator>Yu, Ye-Zhao</creator><creator>Jiang, Peng</creator><creator>Yue, YouLing</creator><creator>Wang, Lin</creator><general>Science China Press</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20190501</creationdate><title>The radiation structure of PSR B2016+28 observed with FAST</title><author>Lu, JiGuang ; Peng, Bo ; Xu, RenXin ; Yu, Meng ; Dai, Shi ; Zhu, WeiWei ; Yu, Ye-Zhao ; Jiang, Peng ; Yue, YouLing ; Wang, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-a6ed47bb2d59d74cc73c41001f20d72dd646664d6c070ac25cde7f55b67c21363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Astronomy</topic><topic>Classical and Continuum Physics</topic><topic>Collaboration</topic><topic>Correlation</topic><topic>Geomagnetism</topic><topic>Magnetosphere</topic><topic>Observations and Techniques</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Pulsar magnetospheres</topic><topic>Pulsars</topic><topic>Pulse duration</topic><topic>Radiation</topic><topic>Radio telescopes</topic><topic>Science</topic><topic>Separation</topic><topic>Telescope</topic><topic>Telescopes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, JiGuang</creatorcontrib><creatorcontrib>Peng, Bo</creatorcontrib><creatorcontrib>Xu, RenXin</creatorcontrib><creatorcontrib>Yu, Meng</creatorcontrib><creatorcontrib>Dai, Shi</creatorcontrib><creatorcontrib>Zhu, WeiWei</creatorcontrib><creatorcontrib>Yu, Ye-Zhao</creatorcontrib><creatorcontrib>Jiang, Peng</creatorcontrib><creatorcontrib>Yue, YouLing</creatorcontrib><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>FAST Collaboration</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Science China. Physics, mechanics &amp; astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, JiGuang</au><au>Peng, Bo</au><au>Xu, RenXin</au><au>Yu, Meng</au><au>Dai, Shi</au><au>Zhu, WeiWei</au><au>Yu, Ye-Zhao</au><au>Jiang, Peng</au><au>Yue, YouLing</au><au>Wang, Lin</au><aucorp>FAST Collaboration</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The radiation structure of PSR B2016+28 observed with FAST</atitle><jtitle>Science China. Physics, mechanics &amp; astronomy</jtitle><stitle>Sci. China Phys. Mech. Astron</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>62</volume><issue>5</issue><spage>959505</spage><pages>959505-</pages><artnum>959505</artnum><issn>1674-7348</issn><eissn>1869-1927</eissn><abstract>With the largest dish Five-hundred-meter Aperture Spherical radio Telescope (FAST), both the mean and single pulses of PSR B2016+28, especially including the single-pulse structure, are investigated in detail in this study. The mean pulse profiles at different frequencies can be well fitted in a conal model, and the peak separation of intensity-dependent pulse profiles increases with intensity. The integrated pulses are obviously frequency dependent (pulse width decreases by ~20% as frequency increases from 300 to 750 MHz), but the structure of single pulses changes slightly (the corresponding correlation scale decreases by only ~1%). This disparity between mean and single pulses provides independent evidence for the existence of the RS-type vacuum inner gap, indicating a strong bond between particles on the pulsar surface. Diffused drifting sub-pulses are analyzed. The results show that the modulation period along pulse series ( P 3 ) is positively correlated to the separation between two adjacent sub-pulses ( P 2 ). This correlation may hint a rough surface on the pulsar, eventually resulting in the irregular drift of sparks. All the observational results may have significant implications in the dynamics of pulsar magnetosphere and are discussed extensively in this paper.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11433-019-9394-x</doi></addata></record>
fulltext fulltext
identifier ISSN: 1674-7348
ispartof Science China. Physics, mechanics & astronomy, 2019-05, Vol.62 (5), p.959505, Article 959505
issn 1674-7348
1869-1927
language eng
recordid cdi_proquest_journals_2918616116
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Analysis
Astronomy
Classical and Continuum Physics
Collaboration
Correlation
Geomagnetism
Magnetosphere
Observations and Techniques
Physics
Physics and Astronomy
Pulsar magnetospheres
Pulsars
Pulse duration
Radiation
Radio telescopes
Science
Separation
Telescope
Telescopes
title The radiation structure of PSR B2016+28 observed with FAST
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T19%3A40%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20radiation%20structure%20of%20PSR%20B2016+28%20observed%20with%20FAST&rft.jtitle=Science%20China.%20Physics,%20mechanics%20&%20astronomy&rft.au=Lu,%20JiGuang&rft.aucorp=FAST%20Collaboration&rft.date=2019-05-01&rft.volume=62&rft.issue=5&rft.spage=959505&rft.pages=959505-&rft.artnum=959505&rft.issn=1674-7348&rft.eissn=1869-1927&rft_id=info:doi/10.1007/s11433-019-9394-x&rft_dat=%3Cgale_proqu%3EA727492580%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918616116&rft_id=info:pmid/&rft_galeid=A727492580&rfr_iscdi=true