The radiation structure of PSR B2016+28 observed with FAST

With the largest dish Five-hundred-meter Aperture Spherical radio Telescope (FAST), both the mean and single pulses of PSR B2016+28, especially including the single-pulse structure, are investigated in detail in this study. The mean pulse profiles at different frequencies can be well fitted in a con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Physics, mechanics & astronomy mechanics & astronomy, 2019-05, Vol.62 (5), p.959505, Article 959505
Hauptverfasser: Lu, JiGuang, Peng, Bo, Xu, RenXin, Yu, Meng, Dai, Shi, Zhu, WeiWei, Yu, Ye-Zhao, Jiang, Peng, Yue, YouLing, Wang, Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the largest dish Five-hundred-meter Aperture Spherical radio Telescope (FAST), both the mean and single pulses of PSR B2016+28, especially including the single-pulse structure, are investigated in detail in this study. The mean pulse profiles at different frequencies can be well fitted in a conal model, and the peak separation of intensity-dependent pulse profiles increases with intensity. The integrated pulses are obviously frequency dependent (pulse width decreases by ~20% as frequency increases from 300 to 750 MHz), but the structure of single pulses changes slightly (the corresponding correlation scale decreases by only ~1%). This disparity between mean and single pulses provides independent evidence for the existence of the RS-type vacuum inner gap, indicating a strong bond between particles on the pulsar surface. Diffused drifting sub-pulses are analyzed. The results show that the modulation period along pulse series ( P 3 ) is positively correlated to the separation between two adjacent sub-pulses ( P 2 ). This correlation may hint a rough surface on the pulsar, eventually resulting in the irregular drift of sparks. All the observational results may have significant implications in the dynamics of pulsar magnetosphere and are discussed extensively in this paper.
ISSN:1674-7348
1869-1927
DOI:10.1007/s11433-019-9394-x