Improvement of the chirality near avoided resonance crossing in optical microcavity
Chirality is one of the important phenomena at the vicinity of exceptional point (EP). The conventional understanding is that the chirality is determined by asymmetrical scattering efficiency (η), which reaches to zero only when the resonance ap- proaches EP. Here we study the possibility to enhance...
Gespeichert in:
Veröffentlicht in: | Science China. Physics, mechanics & astronomy mechanics & astronomy, 2015-11, Vol.58 (11), p.55-62, Article 114210 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Chirality is one of the important phenomena at the vicinity of exceptional point (EP). The conventional understanding is that the chirality is determined by asymmetrical scattering efficiency (η), which reaches to zero only when the resonance ap- proaches EP. Here we study the possibility to enhance the chirality in open systems with a more robust mechanism. By com- bining chirality with avoided resonance crossing, we show that the chirality and 7 can be dramatically modified. Taking a spi- ral shaped annular cavity as an example, we show that the chirality of optical resonances can be significantly improved when two sets of chiral states approach each other, The imbalance between counterclockwise (CCW) components and clockwise (CW) components has been enhanced by more than an order of magnitude. Our research provides a new route to tailor and control the chirality in open systems. |
---|---|
ISSN: | 1674-7348 1869-1927 |
DOI: | 10.1007/s11433-015-5729-9 |