A compressive tracking based on time-space Kalman fusion model

The compressive tracking (CT)method is a simple yet efficient algorithm which compresses the high-dimensional features into a low-dimensional space while preserving most of the salient information. This paper proposes a compressive time-space Kalman fusion tracking algorithm to extend the CT method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Information sciences 2016-01, Vol.59 (1), p.117-131
Hauptverfasser: Yun, Xiao, Jing, Zhongliang, Xiao, Gang, Jin, Bo, Zhang, Canlong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The compressive tracking (CT)method is a simple yet efficient algorithm which compresses the high-dimensional features into a low-dimensional space while preserving most of the salient information. This paper proposes a compressive time-space Kalman fusion tracking algorithm to extend the CT method to the case of multi-sensor fusion tracking. Existing fusion trackers deal with multi-sensor features individually and without time-space adaptability. Besides, significant information cumulated in the updating process has not been fully exploited, which calls for a necessity for temporal information extraction. Unlike previous algorithms, the proposed fusion model is completed in both space and time domains. Also, extended Kalman filter is introduced to formulate an updating method for fusion coefficient optimization. The accuracy and robustness of the proposed fusion tracking algorithm are demonstrated by several experimental results.
ISSN:1674-733X
1869-1919
DOI:10.1007/s11432-015-5356-0