On computing the symplectic LLT factorization

We analyze two algorithms for computing the symplectic factorization A = LL T of a given symmetric positive definite symplectic matrix A . The first algorithm W 1 is an implementation of the HH T factorization from Dopico and Johnson ( SIAM J. Matrix Anal. Appl. 31(2):650–673, 2009 ), see Theorem 5....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical algorithms 2023-07, Vol.93 (3), p.1401-1416
Hauptverfasser: Bujok, Maksymilian, Smoktunowicz, Alicja, Borowik, Grzegorz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1416
container_issue 3
container_start_page 1401
container_title Numerical algorithms
container_volume 93
creator Bujok, Maksymilian
Smoktunowicz, Alicja
Borowik, Grzegorz
description We analyze two algorithms for computing the symplectic factorization A = LL T of a given symmetric positive definite symplectic matrix A . The first algorithm W 1 is an implementation of the HH T factorization from Dopico and Johnson ( SIAM J. Matrix Anal. Appl. 31(2):650–673, 2009 ), see Theorem 5.2. The second one is a new algorithm W 2 that uses both Cholesky and Reverse Cholesky decompositions of symmetric positive definite matrices. We present a comparison of these algorithms and illustrate their properties by numerical experiments in MATLAB . A particular emphasis is given on symplecticity properties of the computed matrices in floating-point arithmetic.
doi_str_mv 10.1007/s11075-022-01472-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918609670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918609670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-a3e40688c9a5aa604b2fd7466b25e73f378072885d9f4f272d270c4106a596213</originalsourceid><addsrcrecordid>eNp9kLFOwzAURS0EEqXwA0yRmA3PL47tjKgCihSpS5kt17VLqjYJtjuEr8cQJDamd4d77pMOIbcM7hmAfIiMgawoIFJgXCIdz8iMVTnUKKrznIFJyspaXZKrGPcAGUM5I3TVFbY_DqfUdrsivbsijsfh4GxqbdE068Ibm_rQfprU9t01ufDmEN3N752Tt-en9WJJm9XL6-KxoRY5T9SUjoNQytamMkYA36DfSi7EBisnS19KBRKVqra15x4lblGC5QyEqWqBrJyTu2l3CP3HycWk9_0pdPmlxpopAbWQkFs4tWzoYwzO6yG0RxNGzUB_a9GTFp216B8tesxQOUExl7udC3_T_1BfHpdjgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918609670</pqid></control><display><type>article</type><title>On computing the symplectic LLT factorization</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bujok, Maksymilian ; Smoktunowicz, Alicja ; Borowik, Grzegorz</creator><creatorcontrib>Bujok, Maksymilian ; Smoktunowicz, Alicja ; Borowik, Grzegorz</creatorcontrib><description>We analyze two algorithms for computing the symplectic factorization A = LL T of a given symmetric positive definite symplectic matrix A . The first algorithm W 1 is an implementation of the HH T factorization from Dopico and Johnson ( SIAM J. Matrix Anal. Appl. 31(2):650–673, 2009 ), see Theorem 5.2. The second one is a new algorithm W 2 that uses both Cholesky and Reverse Cholesky decompositions of symmetric positive definite matrices. We present a comparison of these algorithms and illustrate their properties by numerical experiments in MATLAB . A particular emphasis is given on symplecticity properties of the computed matrices in floating-point arithmetic.</description><identifier>ISSN: 1017-1398</identifier><identifier>EISSN: 1572-9265</identifier><identifier>DOI: 10.1007/s11075-022-01472-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Algorithms ; Computation ; Computer Science ; Decomposition ; Factorization ; Floating point arithmetic ; Lie groups ; Mathematical analysis ; Matrices (mathematics) ; Numeric Computing ; Numerical Analysis ; Original Paper ; Theory of Computation</subject><ispartof>Numerical algorithms, 2023-07, Vol.93 (3), p.1401-1416</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-a3e40688c9a5aa604b2fd7466b25e73f378072885d9f4f272d270c4106a596213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11075-022-01472-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11075-022-01472-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Bujok, Maksymilian</creatorcontrib><creatorcontrib>Smoktunowicz, Alicja</creatorcontrib><creatorcontrib>Borowik, Grzegorz</creatorcontrib><title>On computing the symplectic LLT factorization</title><title>Numerical algorithms</title><addtitle>Numer Algor</addtitle><description>We analyze two algorithms for computing the symplectic factorization A = LL T of a given symmetric positive definite symplectic matrix A . The first algorithm W 1 is an implementation of the HH T factorization from Dopico and Johnson ( SIAM J. Matrix Anal. Appl. 31(2):650–673, 2009 ), see Theorem 5.2. The second one is a new algorithm W 2 that uses both Cholesky and Reverse Cholesky decompositions of symmetric positive definite matrices. We present a comparison of these algorithms and illustrate their properties by numerical experiments in MATLAB . A particular emphasis is given on symplecticity properties of the computed matrices in floating-point arithmetic.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Computation</subject><subject>Computer Science</subject><subject>Decomposition</subject><subject>Factorization</subject><subject>Floating point arithmetic</subject><subject>Lie groups</subject><subject>Mathematical analysis</subject><subject>Matrices (mathematics)</subject><subject>Numeric Computing</subject><subject>Numerical Analysis</subject><subject>Original Paper</subject><subject>Theory of Computation</subject><issn>1017-1398</issn><issn>1572-9265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kLFOwzAURS0EEqXwA0yRmA3PL47tjKgCihSpS5kt17VLqjYJtjuEr8cQJDamd4d77pMOIbcM7hmAfIiMgawoIFJgXCIdz8iMVTnUKKrznIFJyspaXZKrGPcAGUM5I3TVFbY_DqfUdrsivbsijsfh4GxqbdE068Ibm_rQfprU9t01ufDmEN3N752Tt-en9WJJm9XL6-KxoRY5T9SUjoNQytamMkYA36DfSi7EBisnS19KBRKVqra15x4lblGC5QyEqWqBrJyTu2l3CP3HycWk9_0pdPmlxpopAbWQkFs4tWzoYwzO6yG0RxNGzUB_a9GTFp216B8tesxQOUExl7udC3_T_1BfHpdjgg</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Bujok, Maksymilian</creator><creator>Smoktunowicz, Alicja</creator><creator>Borowik, Grzegorz</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230701</creationdate><title>On computing the symplectic LLT factorization</title><author>Bujok, Maksymilian ; Smoktunowicz, Alicja ; Borowik, Grzegorz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-a3e40688c9a5aa604b2fd7466b25e73f378072885d9f4f272d270c4106a596213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Computation</topic><topic>Computer Science</topic><topic>Decomposition</topic><topic>Factorization</topic><topic>Floating point arithmetic</topic><topic>Lie groups</topic><topic>Mathematical analysis</topic><topic>Matrices (mathematics)</topic><topic>Numeric Computing</topic><topic>Numerical Analysis</topic><topic>Original Paper</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bujok, Maksymilian</creatorcontrib><creatorcontrib>Smoktunowicz, Alicja</creatorcontrib><creatorcontrib>Borowik, Grzegorz</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Numerical algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bujok, Maksymilian</au><au>Smoktunowicz, Alicja</au><au>Borowik, Grzegorz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On computing the symplectic LLT factorization</atitle><jtitle>Numerical algorithms</jtitle><stitle>Numer Algor</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>93</volume><issue>3</issue><spage>1401</spage><epage>1416</epage><pages>1401-1416</pages><issn>1017-1398</issn><eissn>1572-9265</eissn><abstract>We analyze two algorithms for computing the symplectic factorization A = LL T of a given symmetric positive definite symplectic matrix A . The first algorithm W 1 is an implementation of the HH T factorization from Dopico and Johnson ( SIAM J. Matrix Anal. Appl. 31(2):650–673, 2009 ), see Theorem 5.2. The second one is a new algorithm W 2 that uses both Cholesky and Reverse Cholesky decompositions of symmetric positive definite matrices. We present a comparison of these algorithms and illustrate their properties by numerical experiments in MATLAB . A particular emphasis is given on symplecticity properties of the computed matrices in floating-point arithmetic.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11075-022-01472-y</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1017-1398
ispartof Numerical algorithms, 2023-07, Vol.93 (3), p.1401-1416
issn 1017-1398
1572-9265
language eng
recordid cdi_proquest_journals_2918609670
source SpringerLink Journals - AutoHoldings
subjects Algebra
Algorithms
Computation
Computer Science
Decomposition
Factorization
Floating point arithmetic
Lie groups
Mathematical analysis
Matrices (mathematics)
Numeric Computing
Numerical Analysis
Original Paper
Theory of Computation
title On computing the symplectic LLT factorization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A26%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20computing%20the%20symplectic%20LLT%20factorization&rft.jtitle=Numerical%20algorithms&rft.au=Bujok,%20Maksymilian&rft.date=2023-07-01&rft.volume=93&rft.issue=3&rft.spage=1401&rft.epage=1416&rft.pages=1401-1416&rft.issn=1017-1398&rft.eissn=1572-9265&rft_id=info:doi/10.1007/s11075-022-01472-y&rft_dat=%3Cproquest_cross%3E2918609670%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918609670&rft_id=info:pmid/&rfr_iscdi=true