On computing the symplectic LLT factorization

We analyze two algorithms for computing the symplectic factorization A = LL T of a given symmetric positive definite symplectic matrix A . The first algorithm W 1 is an implementation of the HH T factorization from Dopico and Johnson ( SIAM J. Matrix Anal. Appl. 31(2):650–673, 2009 ), see Theorem 5....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical algorithms 2023-07, Vol.93 (3), p.1401-1416
Hauptverfasser: Bujok, Maksymilian, Smoktunowicz, Alicja, Borowik, Grzegorz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We analyze two algorithms for computing the symplectic factorization A = LL T of a given symmetric positive definite symplectic matrix A . The first algorithm W 1 is an implementation of the HH T factorization from Dopico and Johnson ( SIAM J. Matrix Anal. Appl. 31(2):650–673, 2009 ), see Theorem 5.2. The second one is a new algorithm W 2 that uses both Cholesky and Reverse Cholesky decompositions of symmetric positive definite matrices. We present a comparison of these algorithms and illustrate their properties by numerical experiments in MATLAB . A particular emphasis is given on symplecticity properties of the computed matrices in floating-point arithmetic.
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-022-01472-y