On computing the symplectic LLT factorization
We analyze two algorithms for computing the symplectic factorization A = LL T of a given symmetric positive definite symplectic matrix A . The first algorithm W 1 is an implementation of the HH T factorization from Dopico and Johnson ( SIAM J. Matrix Anal. Appl. 31(2):650–673, 2009 ), see Theorem 5....
Gespeichert in:
Veröffentlicht in: | Numerical algorithms 2023-07, Vol.93 (3), p.1401-1416 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We analyze two algorithms for computing the symplectic factorization
A
=
LL
T
of a given symmetric positive definite symplectic matrix
A
. The first algorithm
W
1
is an implementation of the
HH
T
factorization from Dopico and Johnson (
SIAM J. Matrix Anal. Appl.
31(2):650–673,
2009
), see Theorem 5.2. The second one is a new algorithm
W
2
that uses both Cholesky and Reverse Cholesky decompositions of symmetric positive definite matrices. We present a comparison of these algorithms and illustrate their properties by numerical experiments in
MATLAB
. A particular emphasis is given on symplecticity properties of the computed matrices in floating-point arithmetic. |
---|---|
ISSN: | 1017-1398 1572-9265 |
DOI: | 10.1007/s11075-022-01472-y |