Some Inexact Hybrid Proximal Augmented Lagrangian Algorithms
In this work, Solodov–Svaiter's hybrid projection-proximal and extragradient-proximal methods [16,17] are used to derive two algorithms to find a Karush–Kuhn–Tucker pair of a convex programming problem. These algorithms are variations of the proximal augmented Lagrangian. As a main feature, bot...
Gespeichert in:
Veröffentlicht in: | Numerical algorithms 2004-04, Vol.35 (2-4), p.175-184 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, Solodov–Svaiter's hybrid projection-proximal and extragradient-proximal methods [16,17] are used to derive two algorithms to find a Karush–Kuhn–Tucker pair of a convex programming problem. These algorithms are variations of the proximal augmented Lagrangian. As a main feature, both algorithms allow for a fixed relative accuracy of the solution of the unconstrained subproblems. We also show that the convergence is Q-linear under strong second order assumptions. Preliminary computational experiments are also presented. |
---|---|
ISSN: | 1017-1398 1572-9265 |
DOI: | 10.1023/B:NUMA.0000021768.30330.4b |