Some Inexact Hybrid Proximal Augmented Lagrangian Algorithms

In this work, Solodov–Svaiter's hybrid projection-proximal and extragradient-proximal methods [16,17] are used to derive two algorithms to find a Karush–Kuhn–Tucker pair of a convex programming problem. These algorithms are variations of the proximal augmented Lagrangian. As a main feature, bot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical algorithms 2004-04, Vol.35 (2-4), p.175-184
Hauptverfasser: Humes Jr, Carlos, Silva, Paulo J.S., Svaiter, Benar F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, Solodov–Svaiter's hybrid projection-proximal and extragradient-proximal methods [16,17] are used to derive two algorithms to find a Karush–Kuhn–Tucker pair of a convex programming problem. These algorithms are variations of the proximal augmented Lagrangian. As a main feature, both algorithms allow for a fixed relative accuracy of the solution of the unconstrained subproblems. We also show that the convergence is Q-linear under strong second order assumptions. Preliminary computational experiments are also presented.
ISSN:1017-1398
1572-9265
DOI:10.1023/B:NUMA.0000021768.30330.4b