Highly selective and stable hydrogenation of heavy aromatic-naphthalene over transition metal phosphides

The present study reports a highly selective and stable catalytic approach for producing tetralin, an important chemical, solvent, and H2 storage material. Transition metal phosphides (MOP, Ni2P, Co2P, and Fe2P) were prepared by wet impregnation and temperature-programmed reduction and characterized...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Chemistry 2015-04, Vol.58 (4), p.738-746
Hauptverfasser: Usman, Muhammad, Li, Dan, Li, ChunShan, Zhang, SuoJiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present study reports a highly selective and stable catalytic approach for producing tetralin, an important chemical, solvent, and H2 storage material. Transition metal phosphides (MOP, Ni2P, Co2P, and Fe2P) were prepared by wet impregnation and temperature-programmed reduction and characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), EDX mapping, scanning electron microscopy (SEM), transmission electron microscopy (TEM), brunauer-emmett- teller (BET), temperature-programmed desorption of ammonia (NH3-TPD), and fourier transform infrared spectroscopy of pyridine (pyridine-FTIR). Of all the transition metal phosphides MoP was formed at a lower reduction temperature, which resuited in smaller particle size that enhanced the overall surface area of the catalyst. The existence of weak, moderate, and Lewis acidic sites over MoP were responsible for its high tetralin selectivity (90%) and stability during the 100 h reaction on-stream in a fixed-bed reactor.
ISSN:1674-7291
1869-1870
DOI:10.1007/s11426-014-5199-3