A unified semilocal convergence analysis of a family of iterative algorithms for computing all zeros of a polynomial simultaneously
In this paper, we first present a family of iterative algorithms for simultaneous determination of all zeros of a polynomial. This family contains two well-known algorithms: Dochev-Byrnev’s method and Ehrlich’s method. Second, using Proinov’s approach to studying convergence of iterative methods for...
Gespeichert in:
Veröffentlicht in: | Numerical algorithms 2017-08, Vol.75 (4), p.1193-1204 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we first present a family of iterative algorithms for simultaneous determination of all zeros of a polynomial. This family contains two well-known algorithms: Dochev-Byrnev’s method and Ehrlich’s method. Second, using Proinov’s approach to studying convergence of iterative methods for polynomial zeros, we provide a semilocal convergence theorem that unifies the results of Proinov (Appl. Math. Comput. 284: 102–114,
2016
) for Dochev-Byrnev’s and Ehrlich’s methods. |
---|---|
ISSN: | 1017-1398 1572-9265 |
DOI: | 10.1007/s11075-016-0237-1 |