A unified semilocal convergence analysis of a family of iterative algorithms for computing all zeros of a polynomial simultaneously

In this paper, we first present a family of iterative algorithms for simultaneous determination of all zeros of a polynomial. This family contains two well-known algorithms: Dochev-Byrnev’s method and Ehrlich’s method. Second, using Proinov’s approach to studying convergence of iterative methods for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical algorithms 2017-08, Vol.75 (4), p.1193-1204
1. Verfasser: Ivanov, Stoil I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we first present a family of iterative algorithms for simultaneous determination of all zeros of a polynomial. This family contains two well-known algorithms: Dochev-Byrnev’s method and Ehrlich’s method. Second, using Proinov’s approach to studying convergence of iterative methods for polynomial zeros, we provide a semilocal convergence theorem that unifies the results of Proinov (Appl. Math. Comput. 284: 102–114, 2016 ) for Dochev-Byrnev’s and Ehrlich’s methods.
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-016-0237-1