Regularized minimal-norm solution of an overdetermined system of first kind integral equations
Overdetermined systems of first kind integral equations appear in many applications. When the right-hand side is discretized, the resulting finite-data problem is ill-posed and admits infinitely many solutions. We propose a numerical method to compute the minimal-norm solution in the presence of bou...
Gespeichert in:
Veröffentlicht in: | Numerical algorithms 2023, Vol.92 (1), p.471-502 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 502 |
---|---|
container_issue | 1 |
container_start_page | 471 |
container_title | Numerical algorithms |
container_volume | 92 |
creator | de Alba, Patricia Díaz Fermo, Luisa Pes, Federica Rodriguez, Giuseppe |
description | Overdetermined systems of first kind integral equations appear in many applications. When the right-hand side is discretized, the resulting finite-data problem is ill-posed and admits infinitely many solutions. We propose a numerical method to compute the minimal-norm solution in the presence of boundary constraints. The algorithm stems from the Riesz representation theorem and operates in a reproducing kernel Hilbert space. Since the resulting linear system is strongly ill-conditioned, we construct a regularization method depending on a discrete parameter. It is based on the expansion of the minimal-norm solution in terms of the singular functions of the integral operator defining the problem. Two estimation techniques are tested for the automatic determination of the regularization parameter, namely, the discrepancy principle and the L-curve method. Numerical results concerning two artificial test problems demonstrate the excellent performance of the proposed method. Finally, a particular model typical of geophysical applications, which reproduces the readings of a frequency domain electromagnetic induction device, is investigated. The results show that the new method is extremely effective when the sought solution is smooth, but produces significant information even for non-smooth solutions. |
doi_str_mv | 10.1007/s11075-022-01282-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918593784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918593784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-6e8c0adfed481065a72ef615cd530f0e6590c22b82c8dd1888ff3ceeff5ca9cf3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fz9HJdNOmR1n8ggVB9GqIyWTp2o81aYX115u1gjcvSSDP8w7zMnYu4FIAlFdRCCglB0QOAhVyPGAzIUvkFRbyML1BlFzklTpmJzFuAJKG5Yy9PtF6bEyov8hlbd3VrWl414c2i30zDnXfZb3PTDo_KTgaKCQooXEXB2r3f74Occje685ldTfQOpgmo4_R7N14yo68aSKd_d5z9nJ787y856vHu4fl9YrbXFQDL0hZMM6TWygBhTQlki-EtE7m4IEKWYFFfFNolXNCKeV9bom8l9ZU1udzdjHlbkP_MVIc9KYfQ5dGaqyEklVeqkWicKJs6GMM5PU2pIXDTgvQ-x711KNOPeqfHjUmKZ-kmOBuTeEv-h_rG2qzeDM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918593784</pqid></control><display><type>article</type><title>Regularized minimal-norm solution of an overdetermined system of first kind integral equations</title><source>SpringerLink Journals</source><creator>de Alba, Patricia Díaz ; Fermo, Luisa ; Pes, Federica ; Rodriguez, Giuseppe</creator><creatorcontrib>de Alba, Patricia Díaz ; Fermo, Luisa ; Pes, Federica ; Rodriguez, Giuseppe</creatorcontrib><description>Overdetermined systems of first kind integral equations appear in many applications. When the right-hand side is discretized, the resulting finite-data problem is ill-posed and admits infinitely many solutions. We propose a numerical method to compute the minimal-norm solution in the presence of boundary constraints. The algorithm stems from the Riesz representation theorem and operates in a reproducing kernel Hilbert space. Since the resulting linear system is strongly ill-conditioned, we construct a regularization method depending on a discrete parameter. It is based on the expansion of the minimal-norm solution in terms of the singular functions of the integral operator defining the problem. Two estimation techniques are tested for the automatic determination of the regularization parameter, namely, the discrepancy principle and the L-curve method. Numerical results concerning two artificial test problems demonstrate the excellent performance of the proposed method. Finally, a particular model typical of geophysical applications, which reproduces the readings of a frequency domain electromagnetic induction device, is investigated. The results show that the new method is extremely effective when the sought solution is smooth, but produces significant information even for non-smooth solutions.</description><identifier>ISSN: 1017-1398</identifier><identifier>EISSN: 1572-9265</identifier><identifier>DOI: 10.1007/s11075-022-01282-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Algorithms ; Approximation ; Computer Science ; Electromagnetic induction ; Hilbert space ; Integral equations ; Machine learning ; Mathematical functions ; Numeric Computing ; Numerical Analysis ; Numerical methods ; Operators (mathematics) ; Original Paper ; Parameters ; Regularization ; Regularization methods ; Signal processing ; Theory of Computation</subject><ispartof>Numerical algorithms, 2023, Vol.92 (1), p.471-502</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-6e8c0adfed481065a72ef615cd530f0e6590c22b82c8dd1888ff3ceeff5ca9cf3</citedby><cites>FETCH-LOGICAL-c319t-6e8c0adfed481065a72ef615cd530f0e6590c22b82c8dd1888ff3ceeff5ca9cf3</cites><orcidid>0000-0001-9064-7876</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11075-022-01282-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11075-022-01282-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>de Alba, Patricia Díaz</creatorcontrib><creatorcontrib>Fermo, Luisa</creatorcontrib><creatorcontrib>Pes, Federica</creatorcontrib><creatorcontrib>Rodriguez, Giuseppe</creatorcontrib><title>Regularized minimal-norm solution of an overdetermined system of first kind integral equations</title><title>Numerical algorithms</title><addtitle>Numer Algor</addtitle><description>Overdetermined systems of first kind integral equations appear in many applications. When the right-hand side is discretized, the resulting finite-data problem is ill-posed and admits infinitely many solutions. We propose a numerical method to compute the minimal-norm solution in the presence of boundary constraints. The algorithm stems from the Riesz representation theorem and operates in a reproducing kernel Hilbert space. Since the resulting linear system is strongly ill-conditioned, we construct a regularization method depending on a discrete parameter. It is based on the expansion of the minimal-norm solution in terms of the singular functions of the integral operator defining the problem. Two estimation techniques are tested for the automatic determination of the regularization parameter, namely, the discrepancy principle and the L-curve method. Numerical results concerning two artificial test problems demonstrate the excellent performance of the proposed method. Finally, a particular model typical of geophysical applications, which reproduces the readings of a frequency domain electromagnetic induction device, is investigated. The results show that the new method is extremely effective when the sought solution is smooth, but produces significant information even for non-smooth solutions.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Computer Science</subject><subject>Electromagnetic induction</subject><subject>Hilbert space</subject><subject>Integral equations</subject><subject>Machine learning</subject><subject>Mathematical functions</subject><subject>Numeric Computing</subject><subject>Numerical Analysis</subject><subject>Numerical methods</subject><subject>Operators (mathematics)</subject><subject>Original Paper</subject><subject>Parameters</subject><subject>Regularization</subject><subject>Regularization methods</subject><subject>Signal processing</subject><subject>Theory of Computation</subject><issn>1017-1398</issn><issn>1572-9265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Fz9HJdNOmR1n8ggVB9GqIyWTp2o81aYX115u1gjcvSSDP8w7zMnYu4FIAlFdRCCglB0QOAhVyPGAzIUvkFRbyML1BlFzklTpmJzFuAJKG5Yy9PtF6bEyov8hlbd3VrWl414c2i30zDnXfZb3PTDo_KTgaKCQooXEXB2r3f74Occje685ldTfQOpgmo4_R7N14yo68aSKd_d5z9nJ787y856vHu4fl9YrbXFQDL0hZMM6TWygBhTQlki-EtE7m4IEKWYFFfFNolXNCKeV9bom8l9ZU1udzdjHlbkP_MVIc9KYfQ5dGaqyEklVeqkWicKJs6GMM5PU2pIXDTgvQ-x711KNOPeqfHjUmKZ-kmOBuTeEv-h_rG2qzeDM</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>de Alba, Patricia Díaz</creator><creator>Fermo, Luisa</creator><creator>Pes, Federica</creator><creator>Rodriguez, Giuseppe</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-9064-7876</orcidid></search><sort><creationdate>2023</creationdate><title>Regularized minimal-norm solution of an overdetermined system of first kind integral equations</title><author>de Alba, Patricia Díaz ; Fermo, Luisa ; Pes, Federica ; Rodriguez, Giuseppe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-6e8c0adfed481065a72ef615cd530f0e6590c22b82c8dd1888ff3ceeff5ca9cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Computer Science</topic><topic>Electromagnetic induction</topic><topic>Hilbert space</topic><topic>Integral equations</topic><topic>Machine learning</topic><topic>Mathematical functions</topic><topic>Numeric Computing</topic><topic>Numerical Analysis</topic><topic>Numerical methods</topic><topic>Operators (mathematics)</topic><topic>Original Paper</topic><topic>Parameters</topic><topic>Regularization</topic><topic>Regularization methods</topic><topic>Signal processing</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Alba, Patricia Díaz</creatorcontrib><creatorcontrib>Fermo, Luisa</creatorcontrib><creatorcontrib>Pes, Federica</creatorcontrib><creatorcontrib>Rodriguez, Giuseppe</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Numerical algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Alba, Patricia Díaz</au><au>Fermo, Luisa</au><au>Pes, Federica</au><au>Rodriguez, Giuseppe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regularized minimal-norm solution of an overdetermined system of first kind integral equations</atitle><jtitle>Numerical algorithms</jtitle><stitle>Numer Algor</stitle><date>2023</date><risdate>2023</risdate><volume>92</volume><issue>1</issue><spage>471</spage><epage>502</epage><pages>471-502</pages><issn>1017-1398</issn><eissn>1572-9265</eissn><abstract>Overdetermined systems of first kind integral equations appear in many applications. When the right-hand side is discretized, the resulting finite-data problem is ill-posed and admits infinitely many solutions. We propose a numerical method to compute the minimal-norm solution in the presence of boundary constraints. The algorithm stems from the Riesz representation theorem and operates in a reproducing kernel Hilbert space. Since the resulting linear system is strongly ill-conditioned, we construct a regularization method depending on a discrete parameter. It is based on the expansion of the minimal-norm solution in terms of the singular functions of the integral operator defining the problem. Two estimation techniques are tested for the automatic determination of the regularization parameter, namely, the discrepancy principle and the L-curve method. Numerical results concerning two artificial test problems demonstrate the excellent performance of the proposed method. Finally, a particular model typical of geophysical applications, which reproduces the readings of a frequency domain electromagnetic induction device, is investigated. The results show that the new method is extremely effective when the sought solution is smooth, but produces significant information even for non-smooth solutions.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11075-022-01282-2</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0001-9064-7876</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1017-1398 |
ispartof | Numerical algorithms, 2023, Vol.92 (1), p.471-502 |
issn | 1017-1398 1572-9265 |
language | eng |
recordid | cdi_proquest_journals_2918593784 |
source | SpringerLink Journals |
subjects | Algebra Algorithms Approximation Computer Science Electromagnetic induction Hilbert space Integral equations Machine learning Mathematical functions Numeric Computing Numerical Analysis Numerical methods Operators (mathematics) Original Paper Parameters Regularization Regularization methods Signal processing Theory of Computation |
title | Regularized minimal-norm solution of an overdetermined system of first kind integral equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T01%3A10%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regularized%20minimal-norm%20solution%20of%20an%20overdetermined%20system%20of%20first%20kind%20integral%20equations&rft.jtitle=Numerical%20algorithms&rft.au=de%20Alba,%20Patricia%20D%C3%ADaz&rft.date=2023&rft.volume=92&rft.issue=1&rft.spage=471&rft.epage=502&rft.pages=471-502&rft.issn=1017-1398&rft.eissn=1572-9265&rft_id=info:doi/10.1007/s11075-022-01282-2&rft_dat=%3Cproquest_cross%3E2918593784%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918593784&rft_id=info:pmid/&rfr_iscdi=true |