Improved biocompatibility of phosphorylcholine end-capped poly(butylene succinate)

In this work, the biocompatibility of a biomimetic, fully biodegradable ionomer phosphorylcholine (PC)-functionalized poly(butylene succinate) (PBS-PC) was investigated by means of hemolysis, platelet adhesion, protein adsorption and cytotoxicity experiments. The reference materials were poly(butyle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Chemistry 2013-02, Vol.56 (2), p.174-180
Hauptverfasser: Zhang, ShiPing, Wang, LiLi, Yang, Shan, Gong, YongKuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, the biocompatibility of a biomimetic, fully biodegradable ionomer phosphorylcholine (PC)-functionalized poly(butylene succinate) (PBS-PC) was investigated by means of hemolysis, platelet adhesion, protein adsorption and cytotoxicity experiments. The reference materials were poly(butylene succinate) (PBS) and chloroethylphosphoryl functionalized poly(butylene succinate) (PBS-Cl). The hemolysis rates (HR) of the leaching solutions of PBS, PBS-Cl and PBS-PC were all lower than the safe value, and the rate of PBS-PC was reduced to 1.07%. Scanning electron microscopy (SEM) measurements showed that platelet adhesion and aggregation were significant on both PBS and PBS-Cl surface. In contrast, very few platelets were observed on PBS-PC surface. Bicinchoninic acid (BCA) measurements revealed that the adsorption amounts of bovine serum albumin (BSA) and bovine plasma fibrinogen (BPF) on PBS-PC surface were 52% and 72% reduction respectively compared with those on PBS surface. Moreover, non-cytotoxicity of both PBS-PC particles and its leaching solution was suggested by MTT assay using mouse L929 fibroblast cells. All the results demonstrated that the biocompatibility of PBS could be greatly improved by PC end-capping strategy. This PC functionalized polyester may have potential applications in biological environments as a novel carrier for controlled drug release and scaffold for tissue engineering.
ISSN:1674-7291
1869-1870
DOI:10.1007/s11426-012-4759-7