Parallel extragradient algorithms for multiple set split equilibrium problems in Hilbert spaces

In this paper, we introduce an extension of multiple set split variational inequality problem (Censor et al. Numer. Algor. 59 , 301–323 2012 ) to multiple set split equilibrium problem (MSSEP) and propose two new parallel extragradient algorithms for solving MSSEP when the equilibrium bifunctions ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical algorithms 2018-03, Vol.77 (3), p.741-761
Hauptverfasser: Kim, Do Sang, Van Dinh, Bui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we introduce an extension of multiple set split variational inequality problem (Censor et al. Numer. Algor. 59 , 301–323 2012 ) to multiple set split equilibrium problem (MSSEP) and propose two new parallel extragradient algorithms for solving MSSEP when the equilibrium bifunctions are Lipschitz-type continuous and pseudo-monotone with respect to their solution sets. By using extragradient method combining with cutting techniques, we obtain algorithms for these problems without using any product space. Under certain conditions on parameters, the iteration sequences generated by the proposed algorithms are proved to be weakly and strongly convergent to a solution of MSSEP. An application to multiple set split variational inequality problems and a numerical example and preliminary computational results are also provided.
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-017-0338-5