Terahertz beats of vibrational modes in methanol and ethanol selectively excited by tr-CARS technique
A recently developed time-resolved coherent anti-Stokes Raman scattering(tr-CARS) technique allows the measurement of vibrational coherences with high frequency differences with the ambient environment.The method is based on the short spatial extension of femtosecond pulses with a broadband tunable...
Gespeichert in:
Veröffentlicht in: | Science China. Physics, mechanics & astronomy mechanics & astronomy, 2012-12, Vol.55 (12), p.2351-2356 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A recently developed time-resolved coherent anti-Stokes Raman scattering(tr-CARS) technique allows the measurement of vibrational coherences with high frequency differences with the ambient environment.The method is based on the short spatial extension of femtosecond pulses with a broadband tunable nonlinear optical parametric amplifier(NOPA) and an internal time delay between the probe and pump/Stokes pulse pair in the CARS process.The different beat frequencies between Raman modes can be selectively detected as oscillations in the tr-CARS transient signal with the broadband tunable NOPA.In this work,we aim at the Raman C-H stretching vibrations from 2800 cm 1 to 3000 cm 1,within which the different vibrational modes in both ethanol and methanol are selectively excited and simultaneously detected.The high time resolution of the experimental set-up allows one to monitor the vibrational coherence dynamics and to observe the quantum beat phenomena on a terahertz scale.This investigation indicates that the femtosecond tr-CARS technique is a powerful tool for the real-time monitoring and detection of molecular and biological agents,including airborne contaminants such as bacterial spores,viruses and their toxins. |
---|---|
ISSN: | 1674-7348 1869-1927 |
DOI: | 10.1007/s11433-012-4937-9 |