Quantum Fisher information width in quantum metrology
In scenarios of quantum metrology, the unitary parametrization process often depends on space directions. How to characterize the sensitivity of parameter estimation to space directions is a natural question. We propose the concept of the quantum Fisher information (QFI) width, which is the differen...
Gespeichert in:
Veröffentlicht in: | Science China. Physics, mechanics & astronomy mechanics & astronomy, 2019-04, Vol.62 (4), p.40301, Article 40301 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In scenarios of quantum metrology, the unitary parametrization process often depends on space directions. How to characterize the sensitivity of parameter estimation to space directions is a natural question. We propose the concept of the quantum Fisher information (QFI) width, which is the difference between the maximum and minimum values of the QFI, to quantitatively study the sensitivity. We find that Fock states, the bosonic coherent states, and the displaced Fock states all have zero widths, indicating that QFI is completely inert over all directions, while the width for the spin state with all spins down or up is equal to the number of particles, so this concept will enable us to choose appropriate directions to make unitary transformation to obtain larger QFI. The QFI width of the displaced quantum states is found to be independent of the magnitude of the displacement for both spin and bosonic systems. We also find some relations between the QFI width and squeezing parameters. |
---|---|
ISSN: | 1674-7348 1869-1927 |
DOI: | 10.1007/s11433-018-9325-5 |