Age and genesis of the Danxia landform on Jianglang Mountain, Zhejiang Province
Jianglang Mountain is situated at the transitional zone of South China fold-system, Jiangshan-Shaoxing deep fracture zone and Baoan-Xiakou-Zhangcun fracture zone. The forming of the Xiakou basin was attributed to the pull-apart fault depression by the above fractures in earlier Cretaceous, afterward...
Gespeichert in:
Veröffentlicht in: | Journal of geographical sciences 2009-10, Vol.19 (5), p.615-630 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Jianglang Mountain is situated at the transitional zone of South China fold-system, Jiangshan-Shaoxing deep fracture zone and Baoan-Xiakou-Zhangcun fracture zone. The forming of the Xiakou basin was attributed to the pull-apart fault depression by the above fractures in earlier Cretaceous, afterward, series deposits such as Guantou formation (K1g), Chaochuan formation (K1c) and Fangyan formation (K1f) which belong to Yongkang group, the lower Cretaceous layer accumulated in the Xiakou basin. In late Cretaceous, the above fractures occurred to extrude and the basin began to uplift, meanwhile, amounts of tension fissures and joints were produced since Cenozoic, which accelerated water-dicing into bed-rock. Consequently, landform-building processing: weathering, eroding and collapsing etc. were prevalent as finally to develop the so-called Danxia landform. The Jianglang Mountain landscape zone of the Danxia landform to apply for world natural relics are relying on unique and unparalleled peak, sky-split valley with vivid stones and reviving of platform. What is more, there is significance of study at lithology, stratigraphy and paleo-biology. According to dating for specimen of ophitic vein through-crossing the Yongkang group of Yafeng Peak by K-Ar method, this article revealed the uplift age of red-bed basin to be 77.89±2.6 MaBP (K2) i.e. late Cretaceous, and it is the first chronological datum of Danxia landform research in China. |
---|---|
ISSN: | 1009-637X 1861-9568 |
DOI: | 10.1007/s11442-009-0615-x |