Mid-infrared plasmonic silicon quantum dot/HgCdTe photodetector with ultrahigh specific detectivity
Highly sensitive photodetectors operating at mid-infrared (MIR) wavelengths are urgently required for the applications of astronomy, optical communication, security monitoring, and so forth. However, further promoting the sensitivity in conventional MIR devices for a higher detectivity is challengin...
Gespeichert in:
Veröffentlicht in: | Science China. Information sciences 2023-04, Vol.66 (4), p.142404, Article 142404 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Highly sensitive photodetectors operating at mid-infrared (MIR) wavelengths are urgently required for the applications of astronomy, optical communication, security monitoring, and so forth. However, further promoting the sensitivity in conventional MIR devices for a higher detectivity is challenging. Among the potential strategies, integrating localized surface plasmon resonance with MIR semiconductors is a promising approach to developing high-performance optoelectronics. Here we demonstrate a high-sensitivity boron (B)-doped silicon quantum dot (Si-QD)/HgCdTe (MCT) MIR photodetector. Because of plasmon-induced hot-hole tunneling and enhanced light absorption, the hybrid photodetector exhibits a high specific detectivity of ∼1.6 × 10
9
cm·Hz
1/2
·W
−1
(Jones) and a high-speed response (∼224 ns for the rise time and ∼580 ns for the fall time) at room temperature. Furthermore, the device achieves high-performance spectral blackbody detection with a peak detectivity of up to 1.6×10
11
Jones at ∼5.8 µm under a cryogenic environment of 77 K, higher than that of bare MCT. This prominent enhancement can be attributed to the further suppression of hot-hole cooling due to a reduced phonon population at low temperatures, which facilitates more efficient hot-carrier extraction and contributes to ultrahigh sensitivity. The plasmonic material-integrated MCT architecture can pave the way for developing high-performance MIR photodetection. |
---|---|
ISSN: | 1674-733X 1869-1919 |
DOI: | 10.1007/s11432-022-3549-7 |