A quaternary Diophantine inequality with prime numbers of a special form
Let N be a sufficiently large real number. It is proved here that, for 1 < c < 4803 4040 and for any arbitrary large number E > 0 , the Diophantine inequality | p 1 c + p 2 c + p 3 c + p 4 c - N | < ( log N ) - E is solvable in prime variables p 1 , p 2 , p 3 , p 4 such that, for i = 1 ,...
Gespeichert in:
Veröffentlicht in: | The Ramanujan journal 2024-02, Vol.63 (2), p.259-291 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
N
be a sufficiently large real number. It is proved here that, for
1
<
c
<
4803
4040
and for any arbitrary large number
E
>
0
, the Diophantine inequality
|
p
1
c
+
p
2
c
+
p
3
c
+
p
4
c
-
N
|
<
(
log
N
)
-
E
is solvable in prime variables
p
1
,
p
2
,
p
3
,
p
4
such that, for
i
=
1
,
2
,
3
,
4
, each of the numbers
p
i
+
2
has at most
[
31540280
12007500
-
10100000
c
]
prime factors, counted according to multiplicity. When
c
→
1
, each
p
i
+
2
is
P
16
, which constitutes a large improvement upon the result of Dimitrov [
14
] who showed that each
p
i
+
2
is
P
32
. |
---|---|
ISSN: | 1382-4090 1572-9303 |
DOI: | 10.1007/s11139-023-00700-w |