Anomaly detection by exploiting the tracking trajectory in surveillance videos

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Information sciences 2020-05, Vol.63 (5), p.154101, Article 154101
Hauptverfasser: Xue, Zixuan, Wu, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 154101
container_title Science China. Information sciences
container_volume 63
creator Xue, Zixuan
Wu, Wei
description
doi_str_mv 10.1007/s11432-018-9792-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918548237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918548237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-253c110976b4ca901e8f98f61bc9ecf939ef14a013de87f58345b511c17062d93</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouKz7A7wFPEczSdskx2XxCxa9KHgLaZqurd1mTbqL_fdmreDJucwMPO8MPAhdAr0GSsVNBMg4IxQkUUIxIk_QDGShCChQp2kuREYE52_naBFjS1NxTpmQM_S07P3WdCOu3ODs0PgelyN2X7vON0PTb_Dw7vAQjP34WYJpE-XDiJsex304uKbrTG8dPjSV8_ECndWmi27x2-fo9e72ZfVA1s_3j6vlmlheZANhObcAVImizKxRFJyslawLKK1ytlZcuRoyQ4FXToo6lzzLyxzAgqAFqxSfo6vp7i74z72Lg279PvTppWYKZJ5JxkWiYKJs8DEGV-tdaLYmjBqoPprTkzmdzOmjOS1Thk2ZmNh-48Lf5f9D365EcNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918548237</pqid></control><display><type>article</type><title>Anomaly detection by exploiting the tracking trajectory in surveillance videos</title><source>SpringerLink Journals</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Xue, Zixuan ; Wu, Wei</creator><creatorcontrib>Xue, Zixuan ; Wu, Wei</creatorcontrib><identifier>ISSN: 1674-733X</identifier><identifier>EISSN: 1869-1919</identifier><identifier>DOI: 10.1007/s11432-018-9792-8</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Algorithms ; Anomalies ; Computer Science ; Information Systems and Communication Service ; Moop ; Pedestrians ; Surveillance ; Velocity</subject><ispartof>Science China. Information sciences, 2020-05, Vol.63 (5), p.154101, Article 154101</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-253c110976b4ca901e8f98f61bc9ecf939ef14a013de87f58345b511c17062d93</citedby><cites>FETCH-LOGICAL-c364t-253c110976b4ca901e8f98f61bc9ecf939ef14a013de87f58345b511c17062d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11432-018-9792-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918548237?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,21369,27905,27906,33725,41469,42538,43786,51300,64364,64368,72218</link.rule.ids></links><search><creatorcontrib>Xue, Zixuan</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><title>Anomaly detection by exploiting the tracking trajectory in surveillance videos</title><title>Science China. Information sciences</title><addtitle>Sci. China Inf. Sci</addtitle><subject>Algorithms</subject><subject>Anomalies</subject><subject>Computer Science</subject><subject>Information Systems and Communication Service</subject><subject>Moop</subject><subject>Pedestrians</subject><subject>Surveillance</subject><subject>Velocity</subject><issn>1674-733X</issn><issn>1869-1919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAQhoMouKz7A7wFPEczSdskx2XxCxa9KHgLaZqurd1mTbqL_fdmreDJucwMPO8MPAhdAr0GSsVNBMg4IxQkUUIxIk_QDGShCChQp2kuREYE52_naBFjS1NxTpmQM_S07P3WdCOu3ODs0PgelyN2X7vON0PTb_Dw7vAQjP34WYJpE-XDiJsex304uKbrTG8dPjSV8_ECndWmi27x2-fo9e72ZfVA1s_3j6vlmlheZANhObcAVImizKxRFJyslawLKK1ytlZcuRoyQ4FXToo6lzzLyxzAgqAFqxSfo6vp7i74z72Lg279PvTppWYKZJ5JxkWiYKJs8DEGV-tdaLYmjBqoPprTkzmdzOmjOS1Thk2ZmNh-48Lf5f9D365EcNw</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Xue, Zixuan</creator><creator>Wu, Wei</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20200501</creationdate><title>Anomaly detection by exploiting the tracking trajectory in surveillance videos</title><author>Xue, Zixuan ; Wu, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-253c110976b4ca901e8f98f61bc9ecf939ef14a013de87f58345b511c17062d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Anomalies</topic><topic>Computer Science</topic><topic>Information Systems and Communication Service</topic><topic>Moop</topic><topic>Pedestrians</topic><topic>Surveillance</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Zixuan</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Science China. Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xue, Zixuan</au><au>Wu, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anomaly detection by exploiting the tracking trajectory in surveillance videos</atitle><jtitle>Science China. Information sciences</jtitle><stitle>Sci. China Inf. Sci</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>63</volume><issue>5</issue><spage>154101</spage><pages>154101-</pages><artnum>154101</artnum><issn>1674-733X</issn><eissn>1869-1919</eissn><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11432-018-9792-8</doi></addata></record>
fulltext fulltext
identifier ISSN: 1674-733X
ispartof Science China. Information sciences, 2020-05, Vol.63 (5), p.154101, Article 154101
issn 1674-733X
1869-1919
language eng
recordid cdi_proquest_journals_2918548237
source SpringerLink Journals; ProQuest Central UK/Ireland; Alma/SFX Local Collection; ProQuest Central
subjects Algorithms
Anomalies
Computer Science
Information Systems and Communication Service
Moop
Pedestrians
Surveillance
Velocity
title Anomaly detection by exploiting the tracking trajectory in surveillance videos
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T04%3A56%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anomaly%20detection%20by%20exploiting%20the%20tracking%20trajectory%20in%20surveillance%20videos&rft.jtitle=Science%20China.%20Information%20sciences&rft.au=Xue,%20Zixuan&rft.date=2020-05-01&rft.volume=63&rft.issue=5&rft.spage=154101&rft.pages=154101-&rft.artnum=154101&rft.issn=1674-733X&rft.eissn=1869-1919&rft_id=info:doi/10.1007/s11432-018-9792-8&rft_dat=%3Cproquest_cross%3E2918548237%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918548237&rft_id=info:pmid/&rfr_iscdi=true