A second-order dynamical system for equilibrium problems

We consider a second-order dynamical system for solving equilibrium problems in Hilbert spaces. Under mild conditions, we prove existence and uniqueness of strong global solution of the proposed dynamical system. We establish the exponential convergence of trajectories under strong pseudo-monotonici...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical algorithms 2022-09, Vol.91 (1), p.327-351
Hauptverfasser: Van Vinh, Le, Tran, Van Nam, Vuong, Phan Tu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a second-order dynamical system for solving equilibrium problems in Hilbert spaces. Under mild conditions, we prove existence and uniqueness of strong global solution of the proposed dynamical system. We establish the exponential convergence of trajectories under strong pseudo-monotonicity and Lipschitz-type conditions. We then investigate a discrete version of the second-order dynamical system, which leads to a fixed point-type algorithm with inertial effect and relaxation. The linear convergence of this algorithm is established under suitable conditions on parameters. Finally, some numerical experiments are reported confirming the theoretical results.
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-022-01264-4