Energy estimates for two-dimensional space-Riesz fractional wave equation

The fractional wave equation governs the propagation of mechanical diffusive waves in viscoelastic media which exhibits a power-law creep, and consequently provided a physical interpretation of this equation in the framework of dynamic viscoelasticity. In this paper, we first use the energy method t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical algorithms 2019-03, Vol.80 (3), p.989-1014
Hauptverfasser: Chen, Minghua, Yu, Wenshan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The fractional wave equation governs the propagation of mechanical diffusive waves in viscoelastic media which exhibits a power-law creep, and consequently provided a physical interpretation of this equation in the framework of dynamic viscoelasticity. In this paper, we first use the energy method to estimate the one-dimensional space-Riesz fractional wave equation. The stiff matrices are proved to be commutative for two-dimensional case, which ensures to carry out of the priori error estimates and the energy method. Then, the unconditional stability and convergence with the global truncation error O ( τ 2 + h 2 ) are theoretically proved with the constant coefficients and numerically verified.
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-018-0514-2