Energy estimates for two-dimensional space-Riesz fractional wave equation
The fractional wave equation governs the propagation of mechanical diffusive waves in viscoelastic media which exhibits a power-law creep, and consequently provided a physical interpretation of this equation in the framework of dynamic viscoelasticity. In this paper, we first use the energy method t...
Gespeichert in:
Veröffentlicht in: | Numerical algorithms 2019-03, Vol.80 (3), p.989-1014 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The fractional wave equation governs the propagation of mechanical diffusive waves in viscoelastic media which exhibits a power-law creep, and consequently provided a physical interpretation of this equation in the framework of dynamic viscoelasticity. In this paper, we first use the energy method to estimate the one-dimensional space-Riesz fractional wave equation. The stiff matrices are proved to be commutative for two-dimensional case, which ensures to carry out of the priori error estimates and the energy method. Then, the unconditional stability and convergence with the global truncation error
O
(
τ
2
+
h
2
)
are theoretically proved with the constant coefficients and numerically verified. |
---|---|
ISSN: | 1017-1398 1572-9265 |
DOI: | 10.1007/s11075-018-0514-2 |