Gauss–Laurent-type quadrature rules for the approximation of functionals of a nonsymmetric matrix

This paper is concerned with the approximation of matrix functionals of the form w T f ( A ) v , where A ∈ ℝ n × n is a large nonsymmetric matrix, w , v ∈ ℝ n , and f is a function such that f ( A ) is well defined. We derive Gauss–Laurent quadrature rules for the approximation of these functionals,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical algorithms 2021-12, Vol.88 (4), p.1937-1964
Hauptverfasser: Alahmadi, J., Alqahtani, H., Pranić, M. S., Reichel, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is concerned with the approximation of matrix functionals of the form w T f ( A ) v , where A ∈ ℝ n × n is a large nonsymmetric matrix, w , v ∈ ℝ n , and f is a function such that f ( A ) is well defined. We derive Gauss–Laurent quadrature rules for the approximation of these functionals, and also develop associated anti-Gauss–Laurent quadrature rules that allow us to estimate the quadrature error of the Gauss–Laurent rule. Computed examples illustrate the performance of the quadrature rules described.
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-021-01101-0