Gauss–Laurent-type quadrature rules for the approximation of functionals of a nonsymmetric matrix
This paper is concerned with the approximation of matrix functionals of the form w T f ( A ) v , where A ∈ ℝ n × n is a large nonsymmetric matrix, w , v ∈ ℝ n , and f is a function such that f ( A ) is well defined. We derive Gauss–Laurent quadrature rules for the approximation of these functionals,...
Gespeichert in:
Veröffentlicht in: | Numerical algorithms 2021-12, Vol.88 (4), p.1937-1964 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is concerned with the approximation of matrix functionals of the form
w
T
f
(
A
)
v
, where
A
∈
ℝ
n
×
n
is a large nonsymmetric matrix,
w
,
v
∈
ℝ
n
, and
f
is a function such that
f
(
A
) is well defined. We derive Gauss–Laurent quadrature rules for the approximation of these functionals, and also develop associated anti-Gauss–Laurent quadrature rules that allow us to estimate the quadrature error of the Gauss–Laurent rule. Computed examples illustrate the performance of the quadrature rules described. |
---|---|
ISSN: | 1017-1398 1572-9265 |
DOI: | 10.1007/s11075-021-01101-0 |