Improved Hessian approximations for the limited memory BFGS method

This paper considers simple modifications of the limited memory BFGS (L-BFGS) method for large scale optimization. It describes algorithms in which alternating ways of re-using a given set of stored difference vectors are outlined. The proposed algorithms resemble the L-BFGS method, except that the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical algorithms 1999-01, Vol.22 (1), p.99-112
1. Verfasser: Al‐Baali Mehiddin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper considers simple modifications of the limited memory BFGS (L-BFGS) method for large scale optimization. It describes algorithms in which alternating ways of re-using a given set of stored difference vectors are outlined. The proposed algorithms resemble the L-BFGS method, except that the initial Hessian approximation is defined implicitly like the L-BFGS Hessian in terms of some stored vectors rather than the usual choice of a multiple of the unit matrix. Numerical experiments show that the new algorithms yield desirable improvement over the L-BFGS method.
ISSN:1017-1398
1572-9265
DOI:10.1023/A:1019142304382