Improved Hessian approximations for the limited memory BFGS method
This paper considers simple modifications of the limited memory BFGS (L-BFGS) method for large scale optimization. It describes algorithms in which alternating ways of re-using a given set of stored difference vectors are outlined. The proposed algorithms resemble the L-BFGS method, except that the...
Gespeichert in:
Veröffentlicht in: | Numerical algorithms 1999-01, Vol.22 (1), p.99-112 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper considers simple modifications of the limited memory BFGS (L-BFGS) method for large scale optimization. It describes algorithms in which alternating ways of re-using a given set of stored difference vectors are outlined. The proposed algorithms resemble the L-BFGS method, except that the initial Hessian approximation is defined implicitly like the L-BFGS Hessian in terms of some stored vectors rather than the usual choice of a multiple of the unit matrix. Numerical experiments show that the new algorithms yield desirable improvement over the L-BFGS method. |
---|---|
ISSN: | 1017-1398 1572-9265 |
DOI: | 10.1023/A:1019142304382 |