P-stable exponentially-fitted Obrechkoff methods of arbitrary order for second-order differential equations
We consider the construction of P-stable exponentially-fitted symmetric two-step Obrechkoff methods for solving second order differential equations related to an initial value problem. Our approach is based on two ideas: for the exponential fitting, we follow the ideas of Ixaru and Vanden Berghe; fo...
Gespeichert in:
Veröffentlicht in: | Numerical algorithms 2007-12, Vol.46 (4), p.333-350 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the construction of P-stable exponentially-fitted symmetric two-step Obrechkoff methods for solving second order differential equations related to an initial value problem. Our approach is based on two ideas: for the exponential fitting, we follow the ideas of Ixaru and Vanden Berghe; for the P-stability we introduce exponentially-fitted Padé approximants to the exponential function. By combining these two ideas, we are able to construct P-stable methods of arbitrary (even) order. |
---|---|
ISSN: | 1017-1398 1572-9265 |
DOI: | 10.1007/s11075-007-9142-y |