Densely Connected Dilated Residual Network for Image Denoising: DDR-Net

Image denoising is an important ill-posed problem of image processing. The main goal in image denoising is to suppress noise while protecting textures of the image. A plethora of methods and different approaches have targeted image denoising problem. In this manuscript, we propose a novel method whi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural processing letters 2023-10, Vol.55 (5), p.5567-5581
Hauptverfasser: Acar, Vedat, Eksioglu, Ender M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Image denoising is an important ill-posed problem of image processing. The main goal in image denoising is to suppress noise while protecting textures of the image. A plethora of methods and different approaches have targeted image denoising problem. In this manuscript, we propose a novel method which brings dense and residual blocks together with dilated convolutions in image denoising applications. The proposed method introduces new strategies for proper combination of dense residual blocks and dilated convolution layers. The resulting approach is called as Densely connected Dilated Residual Network (DDR-Net). The proposed DDR-Net extracts multi-scale information by employing dilated convolutions. Use of dilated convolutions leads to improved receptive field performance while keeping the complexity of the network in check. Residual and dense connections on the other hand prevent loss of information along the DDR-Net pipeline. Simulations are performed in both color and grayscale image denoising settings. Quantitative and qualitative results indicate that the proposed network architecture leads to improved results when compared to multiple high performance convolutional denoising networks from the recent literature.
ISSN:1370-4621
1573-773X
DOI:10.1007/s11063-022-11100-4