A Generalization of Sigmoid Loss Function Using Tsallis Statistics for Binary Classification

In this paper, we present a generalization of sigmoid loss function by applying q -exponential ( q -exp) of Tsallis statistics. With this framework, we could relax and/or tighten-up the slopes of sigmoid loss which depend on the q values of q -exp. We called it q -sigmoid. Our derivation on q -sigmo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural processing letters 2023-08, Vol.55 (4), p.5193-5214
Hauptverfasser: Pardede, Hilman F., Adhi, Purwoko, Zilvan, Vicky, Yuliani, Asri R., Arisal, Andria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present a generalization of sigmoid loss function by applying q -exponential ( q -exp) of Tsallis statistics. With this framework, we could relax and/or tighten-up the slopes of sigmoid loss which depend on the q values of q -exp. We called it q -sigmoid. Our derivation on q -sigmoid shows that the proposed loss function could give a way to explain learning rate factors, which in traditional gradient descent optimizations, are set heuristically and their values are selected empirically. Here, we relate it with Lipschitz constant and derive an adaptive way to determine q . We implement the proposed loss function on logistic regression for five datasets: MNIST, Cifar-10, Cifar-100, and two datasets for plant diseases detections. The experiments show that our method could outperform logistic regressions with sigmoid loss and fixed learning rate for some values of q .
ISSN:1370-4621
1573-773X
DOI:10.1007/s11063-022-11087-y