A Novel Flower Pollination Algorithm for Modeling the Boiler Thermal Efficiency

The flower pollination algorithm (FPA) is a nature-inspired optimization algorithm. To improve the solution quality and convergence speed of FPA, we proposed a novel flower pollination algorithm (NFPA) which is a hybrid algorithm based on original FPA and wind driven optimization algorithm. Simulati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural processing letters 2019-04, Vol.49 (2), p.737-759
Hauptverfasser: Niu, Peifeng, Li, Jinbai, Chang, Lingfang, Zhang, Xianchen, Wang, Rongyan, Li, Guoqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The flower pollination algorithm (FPA) is a nature-inspired optimization algorithm. To improve the solution quality and convergence speed of FPA, we proposed a novel flower pollination algorithm (NFPA) which is a hybrid algorithm based on original FPA and wind driven optimization algorithm. Simulation experiments demonstrate that NFPA has better search performance on classical numerical function optimizations compared with other the state-of-the-art optimization methods. In addition, the NFPA is adopted to optimize parameters of fast learning network to build thermal efficiency model of a 330 MW coal-fired boiler and a well-generalized model is obtained. Experimental results show that the tuned fast learning network model by NFPA has better prediction accuracy and generalization ability than other combination models.
ISSN:1370-4621
1573-773X
DOI:10.1007/s11063-018-9854-0