Robust Parametric Twin Support Vector Machine for Pattern Classification

In this paper, we propose a robust parametric twin support vector machine (RPTWSVM) classifier based on Parametric- ν -Support Vector Machine (Par- ν -SVM) and twin support vector machine. In order to capture heteroscedastic noise present in the training data, RPTWSVM finds a pair of parametric marg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural processing letters 2018-02, Vol.47 (1), p.293-323
Hauptverfasser: Rastogi, Reshma, Sharma, Sweta, Chandra, Suresh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a robust parametric twin support vector machine (RPTWSVM) classifier based on Parametric- ν -Support Vector Machine (Par- ν -SVM) and twin support vector machine. In order to capture heteroscedastic noise present in the training data, RPTWSVM finds a pair of parametric margin hyperplanes that automatically adjusts the parametric insensitive margin to incorporate the structural information of data. The proposed model of RPTWSVM is not only useful in controlling the heteroscedastic noise but also has much faster training speed when compared to Par- ν -SVM. Experimental results on several machine learning benchmark datasets show the advantages of RPTWSVM both in terms of generalization ability and training speed over other related models.
ISSN:1370-4621
1573-773X
DOI:10.1007/s11063-017-9633-3