Multiple Instance Learning via Semi-supervised Laplacian TSVM
Multiple instance learning attempts to learn from a training set consists of labeled bags each containing many unlabeled instances. In previous works, most existing algorithms mainly pay attention to the ‘most positive’ instance in each positive bag, but ignore the other instances. For utilizing the...
Gespeichert in:
Veröffentlicht in: | Neural processing letters 2017-08, Vol.46 (1), p.219-232 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Multiple instance learning attempts to learn from a training set consists of labeled bags each containing many unlabeled instances. In previous works, most existing algorithms mainly pay attention to the ‘most positive’ instance in each positive bag, but ignore the other instances. For utilizing these unlabeled instances in positive bags, we present a new multiple instance learning algorithm via semi-supervised laplacian twin support vector machines (called Miss-LTSVM). In Miss-LTSVM, all instances in positive bags are used in the manifold regularization terms for improving the performance of classifier. For verifying the effectiveness of the presented method, a series of comparative experiments are performed on seven multiple instance data sets. Experimental results show that the proposed method has better classification accuracy than other methods in most cases. |
---|---|
ISSN: | 1370-4621 1573-773X |
DOI: | 10.1007/s11063-017-9579-5 |