An Iterative Method for Deciding SVM and Single Layer Neural Network Structures

We present two new classifiers for two-class classification problems using a new Beta-SVM kernel transformation and an iterative algorithm to concurrently select the support vectors for a support vector machine (SVM) and the hidden units for a single hidden layer neural network to achieve a better g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural processing letters 2011-04, Vol.33 (2), p.171-186
Hauptverfasser: Hamdani, Tarek M., Alimi, Adel M., Khabou, Mohamed A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present two new classifiers for two-class classification problems using a new Beta-SVM kernel transformation and an iterative algorithm to concurrently select the support vectors for a support vector machine (SVM) and the hidden units for a single hidden layer neural network to achieve a better generalization performance. To construct the classifiers, the contributing data points are chosen on the basis of a thresholding scheme of the outputs of a single perceptron trained using all training data samples. The chosen support vectors are used to construct a new SVM classifier that we call Beta-SVN. The number of chosen support vectors is used to determine the structure of the hidden layer in a single hidden layer neural network that we call Beta-NN. The Beta-SVN and Beta-NN structures produced by our method outperformed other commonly used classifiers when tested on a 2-dimensional non-linearly separable data set.
ISSN:1370-4621
1573-773X
DOI:10.1007/s11063-011-9171-3