An Iterative Method for Deciding SVM and Single Layer Neural Network Structures
We present two new classifiers for two-class classification problems using a new Beta-SVM kernel transformation and an iterative algorithm to concurrently select the support vectors for a support vector machine (SVM) and the hidden units for a single hidden layer neural network to achieve a better g...
Gespeichert in:
Veröffentlicht in: | Neural processing letters 2011-04, Vol.33 (2), p.171-186 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present two new classifiers for two-class classification problems using a new Beta-SVM kernel transformation and an iterative algorithm to concurrently select the support vectors for a support vector machine (SVM) and the hidden units for a single hidden layer neural network to achieve a better generalization performance. To construct the classifiers, the contributing data points are chosen on the basis of a thresholding scheme of the outputs of a single perceptron trained using all training data samples. The chosen support vectors are used to construct a new SVM classifier that we call Beta-SVN. The number of chosen support vectors is used to determine the structure of the hidden layer in a single hidden layer neural network that we call Beta-NN. The Beta-SVN and Beta-NN structures produced by our method outperformed other commonly used classifiers when tested on a 2-dimensional non-linearly separable data set. |
---|---|
ISSN: | 1370-4621 1573-773X |
DOI: | 10.1007/s11063-011-9171-3 |