Input multiplexing in artificial neurons employing stochastic arithmetic

Artificial neural networks employing stochastic arithmetic can under certain conditions outperform those based upon conventional radix arithmetic in reduced power dissipation, silicon area and improved fault tolerance. This paper describes limitations due to the inherent variance in the stochastic s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural processing letters 2002-02, Vol.15 (1), p.1-8
1. Verfasser: CARD, Howard C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Artificial neural networks employing stochastic arithmetic can under certain conditions outperform those based upon conventional radix arithmetic in reduced power dissipation, silicon area and improved fault tolerance. This paper describes limitations due to the inherent variance in the stochastic signals. We introduce and compare two stochastic multiplexing schemes, inter-count and intra-count multiplexing, for accumulating the total inputs to the artificial neurons.
ISSN:1370-4621
1573-773X
DOI:10.1023/A:1013805129793