An Anisotropic hp-mesh Adaptation Method for Time-Dependent Problems Based on Interpolation Error Control

We propose an efficient mesh adaptive method for the numerical solution of time-dependent partial differential equations considered in the fixed space-time cylinder Ω × ( 0 , T ) . We employ the space-time discontinuous Galerkin method which enables us to use different meshes at different time level...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of scientific computing 2023-05, Vol.95 (2), p.36, Article 36
Hauptverfasser: Dolejší, Vít, May, Georg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose an efficient mesh adaptive method for the numerical solution of time-dependent partial differential equations considered in the fixed space-time cylinder Ω × ( 0 , T ) . We employ the space-time discontinuous Galerkin method which enables us to use different meshes at different time levels in a natural way. The mesh adaptive algorithm is based on control of the interpolation error in the L ∞ ( 0 , T ; L q ( Ω ) ) -norm. The goal is to construct a sequence of conforming triangular meshes in such a way that the interpolation error bound is under a given tolerance and the number of degrees of freedom is minimal. The resulting grids consist of anisotropic mesh elements with varying polynomial approximation degrees with respect to space. We present a theoretical framework of this approach as well as several numerical examples demonstrating the accuracy, efficiency, and applicability of the method.
ISSN:0885-7474
1573-7691
DOI:10.1007/s10915-023-02153-1