A Posteriori Analysis for a Mixed FEM Discretization of the Linear Elasticity Spectral Problem
In this paper we analyze a posteriori error estimates for a mixed formulation of the linear elasticity eigenvalue problem. A posteriori estimators for the nearly and perfectly compressible elasticity spectral problems are proposed. With a post-process argument, we are able to prove reliability and e...
Gespeichert in:
Veröffentlicht in: | Journal of scientific computing 2022-10, Vol.93 (1), p.10, Article 10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we analyze a posteriori error estimates for a mixed formulation of the linear elasticity eigenvalue problem. A posteriori estimators for the nearly and perfectly compressible elasticity spectral problems are proposed. With a post-process argument, we are able to prove reliability and efficiency for the proposed estimators. The numerical method is based in Raviart-Thomas elements to approximate the pseudostress and piecewise polynomials for the displacement. We illustrate our results with numerical tests in two and three dimensions. |
---|---|
ISSN: | 0885-7474 1573-7691 |
DOI: | 10.1007/s10915-022-01972-y |