A Posteriori Error Analysis for Variable-Coefficient Multiterm Time-Fractional Subdiffusion Equations

An initial-boundary value problem of subdiffusion type is considered; the temporal component of the differential operator has the form ∑ i = 1 ℓ q i ( t ) D t α i u ( x , t ) , where the q i are continuous functions, each D t α i is a Caputo derivative, and the α i lie in (0, 1]. Maximum/comparison...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of scientific computing 2022-08, Vol.92 (2), p.73, Article 73
Hauptverfasser: Kopteva, Natalia, Stynes, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 73
container_title Journal of scientific computing
container_volume 92
creator Kopteva, Natalia
Stynes, Martin
description An initial-boundary value problem of subdiffusion type is considered; the temporal component of the differential operator has the form ∑ i = 1 ℓ q i ( t ) D t α i u ( x , t ) , where the q i are continuous functions, each D t α i is a Caputo derivative, and the α i lie in (0, 1]. Maximum/comparison principles for this problem are proved under weak hypotheses. A new positivity result for the multinomial Mittag-Leffler function is derived. A posteriori error bounds are obtained in L 2 ( Ω ) and L ∞ ( Ω ) , where the spatial domain Ω lies in R d with d ∈ { 1 , 2 , 3 } . An adaptive algorithm based on this theory is tested extensively and shown to yield accurate numerical solutions on the meshes generated by the algorithm.
doi_str_mv 10.1007/s10915-022-01936-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918315607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918315607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-61fe567a53b448f255a033f0cbfbe5a6cf54a2cdf7736a1dfb5ee00fecea63943</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAczQfm2RzLKVVoaJg9Rqy6URStt022T3035tawZun4R3eZxgehG4ZvWeU6ofMqGGSUM4JZUYows_QiEktiFaGnaMRrWtJdKWrS3SV85pSamrDRwgm-K3LPaTYpYhnKXUJT7auPeSYcSjh06XomhbItIMQoo-w7fHL0PaxQBu8jBsg8-R8H7uC4fehWcUQhlwinu0Hd9zna3QRXJvh5neO0cd8tpw-kcXr4_N0siBeMNMTxQJIpZ0UTVXVgUvpqBCB-iY0IJ3yQVaO-1XQWijHVqGRAJQG8OCUMJUYo7vT3V3q9gPk3q67IZW_suWG1YJJRXVp8VPLpy7nBMHuUty4dLCM2qNOe9Jpi077o9PyAokTlEt5-wXp7_Q_1DeG9Hov</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918315607</pqid></control><display><type>article</type><title>A Posteriori Error Analysis for Variable-Coefficient Multiterm Time-Fractional Subdiffusion Equations</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Kopteva, Natalia ; Stynes, Martin</creator><creatorcontrib>Kopteva, Natalia ; Stynes, Martin</creatorcontrib><description>An initial-boundary value problem of subdiffusion type is considered; the temporal component of the differential operator has the form ∑ i = 1 ℓ q i ( t ) D t α i u ( x , t ) , where the q i are continuous functions, each D t α i is a Caputo derivative, and the α i lie in (0, 1]. Maximum/comparison principles for this problem are proved under weak hypotheses. A new positivity result for the multinomial Mittag-Leffler function is derived. A posteriori error bounds are obtained in L 2 ( Ω ) and L ∞ ( Ω ) , where the spatial domain Ω lies in R d with d ∈ { 1 , 2 , 3 } . An adaptive algorithm based on this theory is tested extensively and shown to yield accurate numerical solutions on the meshes generated by the algorithm.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-022-01936-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adaptive algorithms ; Algorithms ; Aquifers ; Boundary value problems ; Computational Mathematics and Numerical Analysis ; Continuity (mathematics) ; Differential equations ; Error analysis ; Hypotheses ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Numerical analysis ; Operators (mathematics) ; Theoretical</subject><ispartof>Journal of scientific computing, 2022-08, Vol.92 (2), p.73, Article 73</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-61fe567a53b448f255a033f0cbfbe5a6cf54a2cdf7736a1dfb5ee00fecea63943</citedby><cites>FETCH-LOGICAL-c319t-61fe567a53b448f255a033f0cbfbe5a6cf54a2cdf7736a1dfb5ee00fecea63943</cites><orcidid>0000-0001-7477-6926 ; 0000-0003-2085-7354</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10915-022-01936-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918315607?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72341</link.rule.ids></links><search><creatorcontrib>Kopteva, Natalia</creatorcontrib><creatorcontrib>Stynes, Martin</creatorcontrib><title>A Posteriori Error Analysis for Variable-Coefficient Multiterm Time-Fractional Subdiffusion Equations</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>An initial-boundary value problem of subdiffusion type is considered; the temporal component of the differential operator has the form ∑ i = 1 ℓ q i ( t ) D t α i u ( x , t ) , where the q i are continuous functions, each D t α i is a Caputo derivative, and the α i lie in (0, 1]. Maximum/comparison principles for this problem are proved under weak hypotheses. A new positivity result for the multinomial Mittag-Leffler function is derived. A posteriori error bounds are obtained in L 2 ( Ω ) and L ∞ ( Ω ) , where the spatial domain Ω lies in R d with d ∈ { 1 , 2 , 3 } . An adaptive algorithm based on this theory is tested extensively and shown to yield accurate numerical solutions on the meshes generated by the algorithm.</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Aquifers</subject><subject>Boundary value problems</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Continuity (mathematics)</subject><subject>Differential equations</subject><subject>Error analysis</subject><subject>Hypotheses</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical analysis</subject><subject>Operators (mathematics)</subject><subject>Theoretical</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPAczQfm2RzLKVVoaJg9Rqy6URStt022T3035tawZun4R3eZxgehG4ZvWeU6ofMqGGSUM4JZUYows_QiEktiFaGnaMRrWtJdKWrS3SV85pSamrDRwgm-K3LPaTYpYhnKXUJT7auPeSYcSjh06XomhbItIMQoo-w7fHL0PaxQBu8jBsg8-R8H7uC4fehWcUQhlwinu0Hd9zna3QRXJvh5neO0cd8tpw-kcXr4_N0siBeMNMTxQJIpZ0UTVXVgUvpqBCB-iY0IJ3yQVaO-1XQWijHVqGRAJQG8OCUMJUYo7vT3V3q9gPk3q67IZW_suWG1YJJRXVp8VPLpy7nBMHuUty4dLCM2qNOe9Jpi077o9PyAokTlEt5-wXp7_Q_1DeG9Hov</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Kopteva, Natalia</creator><creator>Stynes, Martin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-7477-6926</orcidid><orcidid>https://orcid.org/0000-0003-2085-7354</orcidid></search><sort><creationdate>20220801</creationdate><title>A Posteriori Error Analysis for Variable-Coefficient Multiterm Time-Fractional Subdiffusion Equations</title><author>Kopteva, Natalia ; Stynes, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-61fe567a53b448f255a033f0cbfbe5a6cf54a2cdf7736a1dfb5ee00fecea63943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Aquifers</topic><topic>Boundary value problems</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Continuity (mathematics)</topic><topic>Differential equations</topic><topic>Error analysis</topic><topic>Hypotheses</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical analysis</topic><topic>Operators (mathematics)</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kopteva, Natalia</creatorcontrib><creatorcontrib>Stynes, Martin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kopteva, Natalia</au><au>Stynes, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Posteriori Error Analysis for Variable-Coefficient Multiterm Time-Fractional Subdiffusion Equations</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>92</volume><issue>2</issue><spage>73</spage><pages>73-</pages><artnum>73</artnum><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>An initial-boundary value problem of subdiffusion type is considered; the temporal component of the differential operator has the form ∑ i = 1 ℓ q i ( t ) D t α i u ( x , t ) , where the q i are continuous functions, each D t α i is a Caputo derivative, and the α i lie in (0, 1]. Maximum/comparison principles for this problem are proved under weak hypotheses. A new positivity result for the multinomial Mittag-Leffler function is derived. A posteriori error bounds are obtained in L 2 ( Ω ) and L ∞ ( Ω ) , where the spatial domain Ω lies in R d with d ∈ { 1 , 2 , 3 } . An adaptive algorithm based on this theory is tested extensively and shown to yield accurate numerical solutions on the meshes generated by the algorithm.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10915-022-01936-2</doi><orcidid>https://orcid.org/0000-0001-7477-6926</orcidid><orcidid>https://orcid.org/0000-0003-2085-7354</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0885-7474
ispartof Journal of scientific computing, 2022-08, Vol.92 (2), p.73, Article 73
issn 0885-7474
1573-7691
language eng
recordid cdi_proquest_journals_2918315607
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Adaptive algorithms
Algorithms
Aquifers
Boundary value problems
Computational Mathematics and Numerical Analysis
Continuity (mathematics)
Differential equations
Error analysis
Hypotheses
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Numerical analysis
Operators (mathematics)
Theoretical
title A Posteriori Error Analysis for Variable-Coefficient Multiterm Time-Fractional Subdiffusion Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A08%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Posteriori%20Error%20Analysis%20for%20Variable-Coefficient%20Multiterm%20Time-Fractional%20Subdiffusion%20Equations&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Kopteva,%20Natalia&rft.date=2022-08-01&rft.volume=92&rft.issue=2&rft.spage=73&rft.pages=73-&rft.artnum=73&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-022-01936-2&rft_dat=%3Cproquest_cross%3E2918315607%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918315607&rft_id=info:pmid/&rfr_iscdi=true